Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.IPM.2020.102219 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
GPS-enabled devices and social media popularity have created an unprecedented opportunity for researchers to collect, explore, and analyze text data with fine-grained spatial and temporal metadata. In this sense, text, time and space are different domains with their own representation scales and methods. This poses a challenge on how to detect relevant patterns that may only arise from the combination of text with spatio-temporal elements. In particular, spatio-temporal textual data representation has relied on feature embedding techniques. This can limit a model's expressiveness for representing certain patterns extracted from the sequence structure of textual data. To deal with the aforementioned problems, we propose an Acceptor recurrent neural network model that jointly models spatio-temporal textual data. Our goal is to focus on representing the mutual influence and relationships that can exist between written language and the time-and-place where it was produced. We represent space, time, and text as tuples, and use pairs of elements to predict a third one. This results in three predictive tasks that are trained simultaneously. We conduct experiments on two social media datasets and on a crime dataset; we use Mean Reciprocal Rank as evaluation metric. Our experiments show that our model outperforms state-of-the-art methods ranging from a 5.5% to a 24.7% improvement for location and time prediction.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | DIAZ-JERALDO, JUAN CARLOS | Hombre |
Universidad de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile |
| 2 | POBLETE-LABRA, BARBARA JEANNETTE | Mujer |
Universidad de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile |
| 3 | Bravo-Marquez, Felipe | Hombre |
Universidad de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile |
| Fuente |
|---|
| FONDECYT |
| CONICYT-PCHA/Doctorado Nacional |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| CONICYT-PCHA/Doctorado |
| Millennium Institute for Foundational Research on Data (IMFD) |
| Agradecimiento |
|---|
| Supported by the Millennium Institute for Foundational Research on Data (IMFD) and by Fondecyt Grant No. 1191604 . The work of Juglar Diaz was supported by CONICYT -PCHA/Doctorado Nacional/ 2016-21160142 . |
| Supported by the Millennium Institute for Foundational Research on Data (IMFD) and by Fondecyt Grant No. 1191604. The work of Juglar Diaz was supported by CONICYT-PCHA/Doctorado Nacional/2016-21160142. |