Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



OMICfpp: a fuzzy approach for paired RNA-Seq counts
Indexado
WoS WOS:000463178000006
Scopus SCOPUS_ID:85063805923
DOI 10.1186/S12864-019-5496-5
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



BackgroundRNA sequencing is a widely used technology for differential expression analysis. However, the RNA-Seq do not provide accurate absolute measurements and the results can be different for each pipeline used. The major problem in statistical analysis of RNA-Seq and in the omics data in general, is the small sample size with respect to the large number of variables. In addition, experimental design must be taken into account and few tools consider it.ResultsWe propose OMICfpp, a method for the statistical analysis of RNA-Seq paired design data. First, we obtain a p-value for each case-control pair using a binomial test. These p-values are aggregated using an ordered weighted average (OWA) with a given orness previously chosen. The aggregated p-value from the original data is compared with the aggregated p-value obtained using the same method applied to random pairs. These new pairs are generated using between-pairs and complete randomization distributions. This randomization p-value is used as a raw p-value to test the differential expression of each gene. The OMICfpp method is evaluated using public data sets of 68 sample pairs from patients with colorectal cancer. We validate our results through bibliographic search of the reported genes and using simulated data set. Furthermore, we compared our results with those obtained by the methods edgeR and DESeq2 for paired samples. Finally, we propose new target genes to validate these as gene expression signatures in colorectal cancer. OMICfpp is available at http://www.uv.es/ayala/software/OMICfpp_0.2.tar.gz.ConclusionsOur study shows that OMICfpp is an accurate method for differential expression analysis in RNA-Seq data with paired design. In addition, we propose the use of randomized p-values pattern graphic as a powerful and robust method to select the target genes for experimental validation.

Revista



Revista ISSN
Bmc Genomics 1471-2164

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biotechnology & Applied Microbiology
Genetics & Heredity
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Berral-Gonzalez, Alberto Hombre Hospital de Salamanca - España
Universidad de Salamanca - España
Univ Salamanca - España
2 RIFFO-CAMPOS, ANGELA LETICIA Mujer Universidad de La Frontera - Chile
3 Ayala, Guillermo Hombre Univ Valencia - España
University of Valencia - España
Universitat de València - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FEDER funds from the Spanish Ministry of Economy and Competitiveness
Chilean CONICYT/FONDECYT-POSTDOCTORADO

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work has been supported by Project DPI2017-87333-R (G.A.) with FEDER funds from the Spanish Ministry of Economy and Competitiveness; and by Chilean CONICYT/FONDECYT-POSTDOCTORADO No3180486 (A.L.R.-C).

Muestra la fuente de financiamiento declarada en la publicación.