Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1090/TRAN/7571 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
For each positive integer n, let g(Z)(n) be the smallest integer such that if an integral quadratic form in n variables can be written as a sum of squares of integral linear forms, then it can be written as a sum of g(Z)(n) squares of integral linear forms. We show that every positive definite integral quadratic form is equivalent to what we call a balanced Hermite-Korkin-Zolotarevreduced form and use it to show that the growth of g(Z)(n) is at most an exponential of root n. Our result improves the best known upper bound on g(Z)(n) which is on the order of an exponential of n. We also define an analogous number g(O)(*)(n) for writing Hermitian forms over the ring of integers O of an imaginary quadratic field as sums of norms of integral linear forms, and when the class number of the imaginary quadratic field is 1, we show that the growth of g(O)(*)(n) is at most an exponential of root n. We also improve on results of both Conway and Sloane and Kim and Oh on s-integrable lattices.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Beli, Constantin N. | Hombre |
Romanian Acad - Rumania
Institute of Mathematics of the Romanian Academy - Rumania |
| 2 | Chan, Wai Kiu | - |
Wesleyan Univ - Estados Unidos
Wesleyan University Middletown - Estados Unidos |
| 3 | ICAZA-PEREZ, MARIA INES | Mujer |
Universidad de Talca - Chile
|
| 3 | Icaza, María Inés | Mujer |
Universidad de Talca - Chile
|
| 4 | Liu, Jingbo | - |
Univ Hong Kong - China
The University of Hong Kong - Hong Kong The University of Hong Kong - China |