Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1090/CONM/717/14449 | ||||
| Año | 2018 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the Krein Laplacian on a regular bounded domain Omega subset of R-d, d >= 2, perturbed by a real-valued multiplier V vanishing on the boundary. Assuming that V has a definite sign, we investigate the asymptotics of the functions counting the eigenvalues of K +V which converge to the origin from below or from above. We show that the effective Hamiltonian that governs the main asymptotic term of these functions is the harmonic Toeplitz operator T-V with symbol V, unitarily equivalent to a pseudodifferential operator on the boundary. In the cases where V admits a power-like decay at partial derivative Omega, or V is compactly supported in Omega, and Omega and supp V are radially symmetric, we obtain the main asymptotic term of the eigenvalue counting functions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bruneau, Vincent | Hombre |
Univ Bordeaux - Francia
Université de Bordeaux - Francia |
| 2 | Raikov, Georgi | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 3 | Bonetto, F | - | |
| 4 | Borthwick, D | - | |
| 5 | Harrell, E | - | |
| 6 | Loss, M | - |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Chilean Scientific Foundation Fondecyt |
| Visiting Scholars Program of IDEX Bordeaux |
| Agradecimiento |
|---|
| The second author was partially supported by the Chilean Scientific Foundation Fondecyt under Grant 1170816 and by the Visiting Scholars Program of IDEX Bordeaux. |
| The second author was partially supported by the Chilean Scientific Foundation Fondecyt under Grant 1170816 and by the Visiting Scholars Program of IDEX Bordeaux. |