Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3934/MBE.2019021 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A spatio-temporal eco-epidemiological model is formulated by combining an available non-spatial model for predator-prey dynamics with infected prey [D. Greenhalgh and M. Haque, Math. Meth. Appl. Sci., 30 (2007), 911-929] with a spatio-temporal susceptible-infective (SI)-type epidemic model of pattern formation due to diffusion [G.-Q. Sun, Nonlinear Dynamics, 69 (2012), 1097-1104]. It is assumed that predators exclusively eat infected prey, in agreement with the hypothesis that the infection weakens the prey, making it available for predation otherwise we assume that the predator has essentially no access to healthy prey of the same species. Furthermore, the movement of predators is described by a non-local convolution of the density of infected prey as proposed in [R.M. Colombo and E. Rossi, Commun. Math. Sci., 13 (2015), 369-400]. The resulting convection-diffusion-reaction system of three partial differential equations for the densities of susceptible and infected prey and predators is solved by an efficient method that combines weighted essentially non-oscillatory (WENO) reconstructions and an implicit-explicit Runge-Kutta (IMEX-RK) method for time stepping. Numerical examples illustrate the formation of spatial patterns involving all three species.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Burger, R. | Hombre |
Universidad de Concepción - Chile
|
| 2 | Chowell, Gerardo | Hombre |
Georgia State Univ - Estados Unidos
Arizona State Univ - Estados Unidos NIH - Estados Unidos Georgia State University - Estados Unidos Arizona State University - Estados Unidos National Institutes of Health, Bethesda - Estados Unidos National Institutes of Health (NIH) - Estados Unidos |
| 3 | Gavilan, Elvis | Hombre |
Universidad de Concepción - Chile
|
| 4 | Mulet, Pep | - |
Univ Valencia - España
University of Valencia - España Universitat de València - España |
| 5 | VILLADA-OSORIO, LUIS MIGUEL | Hombre |
Universidad de Concepción - Chile
Universidad del Bío Bío - Chile |
| Fuente |
|---|
| Universidad de Concepción |
| FONDECYT |
| Universidad de Chile |
| National Science Foundation |
| Ministerio de Economía y Competitividad |
| CONICYT (Chile) |
| Comisión Nacional de Investigación Científica y Tecnológica |
| NSF |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Ministerio de EconomÃa y Competitividad |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| CONICYT Scholarship |
| Universidad de Concepción |
| Spanish MINECO project |
| Conicyt (Chile), project PAI-MEC |
| Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |
| Centro de Investigación en Ingeniería Matemática |
| NSF-IIS RAPID |
| INRIA Associated Team "Efficient numerical schemes for non-local transport phenomena (NOLOCO; 2018-2020)" |
| BASAL project CMM, Universidad de Chile |
| Centro CRHIAM Proyecto |
| Centro de Investigación en Computación |
| Institut national de recherche en informatique et en automatique (INRIA) |
| NSF-IIS |
| Agradecimiento |
|---|
| RB is supported by Fondecyt project 1170473; and Centro CRHIAM Proyecto Conicyt/Fondap/15130015. PM is supported by Spanish MINECO project MTM2017-83942-P and Conicyt (Chile), project PAI-MEC, folio 80150006. LMV is supported by Fondecyt project 1181511. RB and LMV are also supported by BASAL project CMM, Universidad de Chile and Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion and the INRIA Associated Team "Efficient numerical schemes for non-local transport phenomena (NOLOCO; 2018-2020)". EG is supported by CONICYT scholarship. GC acknowledges financial support from grants NSF-IIS RAPID award #1518939, NSF grant 1318788 III: Small: Data Management for Real-Time Data Driven Epidemic simulation, and Conicyt (Chile), project MEC80170119. |
| RB is supported by Fondecyt project 1170473; and Centro CRHIAM Proyecto Coni-cyt/Fondap/15130015. PM is supported by Spanish MINECO project MTM2017-83942-P and Conicyt (Chile), project PAI-MEC, folio 80150006. LMV is supported by Fondecyt project 1181511. RB and LMV are also supported by BASAL project CMM, Universidad de Chile and Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción and the INRIA Associated Team “Efficient numerical schemes for non-local transport phenomena (NOLOCO; 2018–2020)”. EG is supported by CONICYT scholarship. GC acknowledges financial support from grants NSF-IIS RAPID award #1518939, NSF grant 1318788 III: Small: Data Management for Real-Time Data Driven Epidemic simulation, and Conicyt (Chile), project MEC80170119. |