Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Clasificación de Imágenes Urbanas Aéreas: Comparación entre Descriptores de Bajo Nivel y Aprendizaje Profundo
Indexado
Scopus SCOPUS_ID:85020469792
SciELO S0718-07642017000300021
DOI
Año 2017
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



En este artículo se presenta una comparación entre diferentes algoritmos de descripción de texturas de bajo nivel acoplados con una máquina de soporte vectorial versus el algoritmo de aprendizaje profundo, en la tarea de reconocimiento y clasificación de imágenes aéreas. Para dicha tarea, una base de datos de 1,200 imágenes es utilizada para realizar los entrenamientos supervisados. El objetivo consiste en clasificar las imágenes en seis categorías comúnmente encontradas en zonas urbanas, de tal manera que pueda ser utilizado en cualquier parte del mundo. Los resultados arrojan que con 150 muestras de cada clase, el algoritmo de aprendizaje profundo es capaz de clasificar imágenes de avenidas, edificios, industrias, zonas naturales, zonas residenciales y cuerpos de agua, con un 87% de exactitud. Los resultados experimentales presentados muestran que las imágenes etiquetadas como edificios e industrias son las más complejas de discernir entre ellas, tanto para descriptores de bajo nivel como para las técnicas de aprendizaje profundo.

Revista



Revista ISSN
Información Tecnológica 0718-0764

Disciplinas de Investigación



WOS
Engineering, Multidisciplinary
Scopus
Computer Science Applications
Industrial And Manufacturing Engineering
Food Science
Strategy And Management
Energy (All)
Geotechnical Engineering And Engineering Geology
SciELO
Engineering

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
Arista-Jalife, Antonio Hombre Instituto Politécnico Nacional - México
Calderón-Auza, Gustavo Hombre Instituto Politécnico Nacional - México
Fierro-Radilla, Atoany - Instituto Politécnico Nacional - México
Nakano, Mariko Mujer Instituto Politécnico Nacional - México

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.