Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||||
| DOI | |||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Resumen En este artículo se presenta una nueva metodología basada en la aplicación de algoritmos Máquina de Soporte Vectorial, Naïve Bayes y Algoritmos Genéticos en diagnósticos de evaluaciones psicosociales para la identificación del grado de riesgo psicosocial en docentes de colegios públicos en Colombia. Se realizó un estudio comparativo del modelo de aprendizaje de máquina para la predicción: Máquinas de Soporte Vectorial (SVM) y Naïve Bayes, en dos etapas, primero con todas las variables y segundo, reduciendo la dimensionalidad de los datos aplicando: algoritmos genéticos. Se seleccionaron las cuarenta mejores variables con mejor eficiencia en la precisión de la predicción. La base de datos utilizada se componía de 3000 registros epidemiológicos, que correspondían a docentes de colegios públicos del área metropolitana de una ciudad colombiana. El uso de SVM reconoce fácilmente variables de tipo fisiológico y el mejor desempeño de predicción se obtuvo con una eficiencia en la precisión del 96,3%.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| Mosquera, Rodolfo | Hombre |
Universidad Nacional de Colombia - Colombia
|
|
| Castrillón, Omar Danilo | Hombre |
Universidad Nacional de Colombia - Colombia
|
|
| Parra, Liliana | Mujer |
Universidad Libre - Colombia
|