Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.4067/S0719-06462011000300001 | ||
| Año | 2011 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We provide a semilocal convergence analysis for Newton-type methods to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The Frechet-derivative of the operator involved is not necessarily continuous invertible. This way we extend the applicability of Newton-type methods Ώ]-[12]. We also provide weaker sufficient convergence conditions, and finer error bound on the distances involved (under the same computational cost) than [1]-[12], in some intersting cases. Numerical examples are also provided in this study.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| Argyros, Ioannis K. | Hombre |
Cameron University - Estados Unidos
|
|
| Hilout, Saïd | - |
Poitiers University - Francia
|