Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



S3Mining: A model-driven engineering approach for supporting novice data miners in selecting suitable classifiers
Indexado
WoS WOS:000470341500011
Scopus SCOPUS_ID:85063423873
DOI 10.1016/J.CSI.2019.03.004
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Data mining has proven to be very useful in order to extract information from data in many different contexts. However, due to the complexity of data mining techniques, it is required the know-how of an expert in this field to select and use them. Actually, adequately applying data mining is out of the reach of novice users which have expertise in their area of work, but lack skills to employ these techniques. In this paper, we use both model driven engineering and scientific workflow standards and tools in order to develop named S3Mining framework, which supports novice users in the process of selecting the data mining classification algorithm that better fits with their data and goal. To this aim, this selection process uses the past experiences of expert data miners with the application of classification techniques over their own datasets. The contributions of our S3Mining framework are as follows: (i) an approach to create a knowledge base which stores the past experiences of experts users, (ii) a process that provides the expert users with utilities for the construction of classifiers' recommenders based on the existing knowledge base, (iii) a system that allows novice data miners to use these recommenders for discovering the classifiers that better fit for solving their problem at hand, and (iv) a public implementation of the framework's workflows. Finally, an experimental evaluation has been conducted to shown the feasibility of our framework.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Software Engineering
Computer Science, Hardware & Architecture
Scopus
Law
Computer Science Applications
Software
Computer Science (All)
Hardware And Architecture
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Espinoza-Oliva, Roberto Hombre Universidad Tecnológica de Chile - Chile
Universidad Tecnológica de Chile (INACAP) - Chile
Univ Tecnol Chile INACAP - Chile
2 Garcia-Saiz, Diego Hombre Univ Cantabria - España
Universidad de Cantabria - España
3 Zorrilla, Marta Mujer Univ Cantabria - España
Universidad de Cantabria - España
4 Jacobo Zubcoff, Jose Hombre Univ Alicante - España
Universitat d'Alacant - España
4 Zubcoff, José Jacobo Hombre Universitat d'Alacant - España
5 Mazon, Jose-Norberto Hombre Univ Alicante - España
Universitat d'Alacant - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Spanish Government

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work has been partially funded by Spanish Government through the research projects TIN2017-86520-C3-3-R and TIN2016-78103-C2-2-R.
This work has been partially funded by Spanish Government through the research projects TIN2017-86520-C3-3-R and TIN2016-78103-C2-2-R.

Muestra la fuente de financiamiento declarada en la publicación.