Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.48084/ETASR.2715 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This article presents a comparison of the computing performance of the MapReduce tool Hadoop and Giraph on large-scale graphs. The main ideas of MapReduce and bulk synchronous parallel (BSP) are reviewed as big data computing approaches to highlight their applicability in large-scale graph processing. This paper reviews the execution performance of Hadoop and Giraph on the PageRank algorithm to classify web pages according to their relevance, and on a few other algorithms to find the minimum spanning tree in a graph with the primary goal of finding the most efficient computing approach to work on large-scale graphs. Experimental results show that the use of Giraph for processing large-size graphs reduces the execution time by 25% in comparison with the results obtained using the Hadoop for the same experiments. Giraph represents the optimal option thanks to its in-memory computing approach that avoids secondary memory direct interaction.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | VIDAL-SILVA, CRISTIAN LORENZO | Mujer |
Universidad Católica del Norte - Chile
|
| 2 | Madariaga, Erika | Mujer |
Universidad Bernardo O'Higgins - Chile
|
| 3 | Pham, T | - |
Universidad de Talca - Chile
|
| 3 | Pham, Trung | Hombre |
Universidad de Talca - Chile
|
| 4 | RUBIO-LEON, JOSE MIGUEL | Hombre |
Technol Univ Chile - Chile
Universidad de Chile - Chile |
| 5 | Urzua-Alul, Luis | Hombre |
Universidad Santo Tomás - Chile
|
| 6 | Carter, Luis | Hombre |
Autonomous Univ Chile - Chile
Universidad Autónoma de Chile - Chile |
| 7 | Johnson, Franklin | Hombre |
Universidad de Playa Ancha - Chile
|