Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JNT.2019.08.012 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present a set of diagonal matrices which index enough Fourier coefficients for a complete characterization of all Siegel cusp forms of degree 2, weight k, level N and character chi, where k is an even integer >= 4, N is an odd, squarefree positive integer, and chi has conductor equal to N. As an application, we show that the Koecher-Maass series of any F is an element of S-k(2) twisted by the set of Maass waveforms whose eigenvalues are in the continuum spectrum of the hyperbolic Laplacian determines F. We also generalize a result due to Skogman about the non-vanishing of all theta components of a Jacobi cusp form of even weight and prime index, which may have some independent interest. (C) 2019 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MARTIN-GONZALEZ, YVES | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Fondo Nacional Desarrollo Cientffico y Tecnologico |
| Agradecimiento |
|---|
| We thank the anonymous referee for suggestions which led to an improvement of the exposition. This research was partially supported by Fondo Nacional Desarrollo Cientffico y Tecnologico 1150943. |
| We thank the anonymous referee for suggestions which led to an improvement of the exposition. This research was partially supported by Fondo Nacional Desarrollo Científico y Tecnológico 1150943 . |