Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1090/PROC/14625 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Recently, it was observed that the roots of the Askey-Wilson polynomial are retrieved at the unique global minimum of an associated strictly convex Morse function [J. F. van Diejen and E. Emsiz, Lett. Math. Phys. 109 (2019), pp. 89-112]. The purpose of the present note is to infer that the corresponding gradient flow converges to the roots in question at an exponential rate.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | van Diejen, Jan Felipe | Hombre |
Universidad de Talca - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agradecimiento |
|---|
| This work was supported in part by the Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) Grant # 1170179. |
| Received by the editors December 14, 2018, and, in revised form, March 10, 2019. 2010 Mathematics Subject Classification. Primary 33D45; Secondary 26C10, 34D05, 34D23. Key words and phrases. Askey-Wilson polynomials, zeros of orthogonal polynomials, gradient flow. This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT ) Grant # 1170179. |