Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/M2AN/2019063 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We introduce a numerical method for the approximation of linear poroelasticity equations, representing the interaction between the non-viscous filtration flow of a fluid and the linear mechanical response of a porous medium. In the proposed formulation, the primary variables in the system are the solid displacement, the fluid pressure, the fluid flux, and the total pressure. A discontinuous finite volume method is designed for the approximation of solid displacement using a dual mesh, whereas a mixed approach is employed to approximate fluid flux and the two pressures. We focus on the stationary case and the resulting discrete problem exhibits a double saddle-point structure. Its solvability and stability are established in terms of bounds (and of norms) that do not depend on the modulus of dilation of the solid. We derive optimal error estimates in suitable norms, for all field variables; and we exemplify the convergence and locking-free properties of this scheme through a series of numerical tests.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Kumar, Sarvesh | - |
Indian Inst Space Sci & Technol - India
Indian Institute of Space Science and Technology - India |
| 2 | OYARZUA-VARGAS, RICARDO | Hombre |
Universidad del Bío Bío - Chile
Universidad de Concepción - Chile |
| 3 | Ruiz-Baier, R. | Hombre |
UNIV OXFORD - Reino Unido
Universidad Adventista de Chile - Chile University of Oxford - Reino Unido |
| 4 | Sandilya, Ruchi | Mujer |
Weierstrass Inst Appl Anal & Stochast - Alemania
Weierstrass Institute for Applied Analysis and Stochastics - Alemania |
| Fuente |
|---|
| CONICYT-Chile |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| CONICYT-Chile through PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal |
| Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal |
| London Mathematical Society |
| Agradecimiento |
|---|
| This research has been partially supported by the London Mathematical Society through the research grant Scheme 5 - thorough work of two anonymous referees whose suggestions and constructive criticism lead to a number of improvements with respect to the initial version of this manuscript. We also thank Eleonora Persanti, Matteo Croci, Marie E. Rognes, and Kent-Andr ' e Mardal for providing the human brain geometry and all relevant model parameters employed in Test 5.51703; and by CONICYT-Chile through project Fondecyt 1161325 and project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal. We thank the |
| Acknowledgements. This research has been partially supported by the London Mathematical Society through the research grant Scheme 5 – 51703; and by CONICYT-Chile through project Fondecyt 1161325 and project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal. We thank the thorough work of two anonymous referees whose suggestions and constructive criticism lead to a number of improvements with respect to the initial version of this manuscript. We also thank Eleonora Persanti, Matteo Croci, Marie E. Rognes, and Kent-AndréMardal for providing the human brain geometry and all relevant model parameters employed in Test 5. |