Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Fuzzy failure probability estimation applying intervening variables
Indexado
WoS WOS:000510946700007
Scopus SCOPUS_ID:85075989265
DOI 10.1016/J.STRUSAFE.2019.101909
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Fuzzy probability offers a framework for taking into account the effects of both aleatoric and epistemic uncertainty on the performance of a system, quantifying its level of safety, for example, in terms of a fuzzy failure probability. However, the practical application of fuzzy probability is often challenging due to increased numerical efforts arising from the need to propagate both types of uncertainties. Hence, this contribution proposes an approach for approximate calculation of fuzzy failure probabilities for a class of problems that involve moderately nonlinear performance functions, where uncertain input parameters of a model are characterized as random variables while their associated distribution parameters (for example, mean and standard deviation) are described as fuzzy variables. The proposed approach is cast as a post-processing step of a standard (yet advanced) reliability analysis. The key issue for performing an approximate calculation of the fuzzy failure probabilities is extracting probability sensitivity information from the reliability analysis stage as well as the introduction of intervening variables that capture - to some extent - the nonlinear relation between distribution parameters and the failure probability. A series of relatively simple illustrative examples demonstrate the capabilities of the proposed approach, highlighting its numerical advantages, as it comprises a single standard reliability analysis plus some additional system analyses.

Revista



Revista ISSN
Structural Safety 0167-4730

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Civil
Scopus
Civil And Structural Engineering
Building And Construction
Safety, Risk, Reliability And Quality
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 VALDEBENITO-CASTILLO, MARCOS ALBERTO Hombre Universidad Técnica Federico Santa María - Chile
2 Beer, M. Hombre Leibniz Univ Hannover - Alemania
UNIV LIVERPOOL - Reino Unido
Tongji Univ - China
Gottfried Wilhelm Leibniz Universität - Alemania
University of Liverpool - Reino Unido
Tongji University - China
Gottfried Wilhelm Leibniz Universität Hannover - Alemania
3 JENSEN-VELASCO, HECTOR ANTONIO Hombre Universidad Técnica Federico Santa María - Chile
4 Chen, Jian Bing - Tongji Univ - China
Tongji University - China
State Key Laboratory of Disaster Reduction in Civil Engineering - China
5 Wei, Pengfei - Leibniz Univ Hannover - Alemania
Northwestern Polytech Univ - China
Gottfried Wilhelm Leibniz Universität - Alemania
Northwestern Polytechnical University - China
Gottfried Wilhelm Leibniz Universität Hannover - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Comisión Nacional de Investigación Científica y Tecnológica
Universidad Técnica Federico Santa María
Alexander von Humboldt Foundation
CONICYT (National Commission for Scientific and Technological Research)
Alexander von Humboldt-Stiftung
Gottfried Wilhelm Leibniz Universität Hannover
Universidad Tecnica Federico Santa Maria under its program PAC (Programa Asistente Cientifico 2017)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research is partially supported by CONICYT (National Commission for Scientific and Technological Research) under Grant No. 1180271 and Universidad Tecnica Federico Santa Maria under its program PAC (Programa Asistente Cientifico 2017). The first author developed this work during a research stay at the Institute for Risk and Reliability (IRZ) of the Leibniz Universitat Hannover, Germany. Both the first and fifth authors conducted this research under the auspice of the Alexander von Humboldt Foundation. This support is gratefully acknowledged by the authors.
This research is partially supported by CONICYT (National Commission for Scientific and Technological Research) under Grant No. 1180271 and Universidad Tecnica Federico Santa Maria under its program PAC (Programa Asistente Cientifico 2017). The first author developed this work during a research stay at the Institute for Risk and Reliability (IRZ) of the Leibniz Universität Hannover, Germany. Both the first and fifth authors conducted this research under the auspice of the Alexander von Humboldt Foundation. This support is gratefully acknowledged by the authors.

Muestra la fuente de financiamiento declarada en la publicación.