Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10916-019-1484-1 | ||||
| Año | 2020 | ||||
| Tipo | material editorial |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The world population ageing is on the rise, which has led to an increase in the demand for medical care due to diseases and symptoms prevalent in health centers. One of the most prevalent symptoms prevalent in older adults is falls, which affect one-third of patients each year and often result in serious injuries that can lead to death. This paper describes the design of a fall detection system for elderly households living alone using very low resolution thermal sensor arrays. The algorithms implemented were LSTM, GRU, and Bi-LSTM; the last one mentioned being that which obtained the best results at 93% in accuracy. The results obtained aim to be a valuable tool for accident prevention for those patients that use it and for clinicians who manage the data.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | TARAMASCO-TORO, CARLA | Mujer |
Universidad de Valparaíso - Chile
|
| 2 | Lazo, Y. | - |
Universidad de Valparaíso - Chile
|
| 3 | Rodenas, Tomas | Hombre |
Universidad de Valparaíso - Chile
|
| 4 | FUENTES-ROJAS, PAOLA | Mujer |
Universidad Nacional Andrés Bello - Chile
|
| 5 | MARTINEZ-LOMAKIN, FELIPE | Hombre |
Universidad de Valparaíso - Chile
|
| 6 | Demongeot, J. | Hombre |
Univ Joseph Fourier Grenoble - Francia
Faculte de Medicine de Grenoble - Universite Joseph Fourier - Francia Universite Grenoble Alpes - Francia |