Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.QUASCIREV.2019.106132 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Sequences of uplifted marine terraces are widespread and reflect the interaction between climatic and tectonic processes at multiple scales, yet their analysis is typically biased by the chosen sea-level (SL) curve. Here we explore the influence of Quaternary SL curves on the geometry of marine terrace sequences using landscape evolution models (LEMs). First, we modeled the young, rapidly uplifting sequence at Xylokastro (Corinth Rift; <240 ka; similar to 1.5 mm/yr), which allowed us to constrain terrace ages, model parameters, and best-fitting SL curves. Models that better reproduced the terraced topography used a glacio-isostatically adjusted SL curve based on coral data (for similar to 125 ka), and a eustatic SL curve based on ice-sheet models (for similar to 240 ka). Second, we explored the opposite end-member of older, slower uplifting sequences (2.6 Ma; 0.1-0.2 mm/yr). We find that cliff diffusion is important to model terrace sequence morphology, and that a hydraulic-model based SL curve reproduced observed terrace morphologies best. Third, we modeled the effect of SL noise with various amplitudes and wavelengths on our interpretations, finding that younger, faster uplifting sequences are less noise-sensitive and thus generally more promising for LEM studies. Our results emphasize the importance of testing a variety of SL-curves within marine terrace studies, and highlight that accurate modeling through LEMs may provide valuable insight on climatic and tectonic forcing to Quaternary coastal evolution. (C) 2019 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | de Gelder, Gino | Hombre |
UNIV PARIS - Francia
Univ Grenoble Alpes - Francia Université Paris-Sud - Francia Institut des Sciences de la Terre, Grenoble - Francia Institut de Physique du Globe de Paris - Francia Université Paris Cité - Francia Institut des Sciences de la Terre (ISTerre) - Francia |
| 2 | Jara-Munoz, Julius | Hombre |
Univ Potsdam - Alemania
Universität Potsdam - Alemania |
| 3 | Melnick, Daniel | Hombre |
Universidad Austral de Chile - Chile
|
| 4 | Fernandez-Blanco, David | Hombre |
UNIV PARIS - Francia
Imperial Coll - Reino Unido Université Paris-Sud - Francia Imperial College London - Reino Unido Institut de Physique du Globe de Paris - Francia Université Paris Cité - Francia |
| 5 | Rouby, Helene | Mujer |
Ecole Normale Super - Francia
Laboratoire de Géologie de l'Ecole Normale Supérieure - Francia Laboratoire de Géologie de l'École Normale Supérieure de Paris - Francia |
| 6 | Pedoja, Kevin | Hombre |
Univ Caen - Francia
Université de Caen Normandie - Francia University of Caen Normandy - Francia |
| 7 | Husson, Laurent | Hombre |
Univ Grenoble Alpes - Francia
Institut des Sciences de la Terre, Grenoble - Francia Institut des Sciences de la Terre (ISTerre) - Francia |
| 8 | ARMIJO-SILVA, RAFAEL ABELARDO | Hombre |
UNIV PARIS - Francia
Université Paris-Sud - Francia Institut de Physique du Globe de Paris - Francia Université Paris Cité - Francia |
| 9 | Lacassin, Robin | Hombre |
UNIV PARIS - Francia
Université Paris-Sud - Francia Institut de Physique du Globe de Paris - Francia Université Paris Cité - Francia |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Deutsche Forschungsgemeinschaft |
| Millennium Scientific Initiative |
| DFG |
| Chilean Government |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Seventh Framework Programme |
| California Department of Fish and Game |
| H2020 Marie Skłodowska-Curie Actions |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| Centre National d'Etudes Spatiales (CNES, France) |
| Institut de Cardiologie de Montréal |
| Canada Millennium Scholarship Foundation |
| Chilean National Fund for Development of Science and Technology (FONDECYT) |
| Centre National d’Etudes Spatiales |
| IdEx Universite de Paris |
| Institut de Cardiologie de Montréal |
| Chilean National Fund for Development of Science and Technology |
| Centre National d’Etudes Spatiales |
| H2020 Marie Skłodowska-Curie Actions |
| Millennium Nucleus The Seismic Cycle Along Subduction Zones - Millennium Scientific Initiative (ICM) of the Chilean Government |
| Science and Technology Development Fund |
| People Programme (Marie Sklodowska-Curie Actions) of the European Union's Seventh Framework Programme under the ITN project ALErT (Grant FP7-PEOPLE-2013-ITN) |
| Institut de Physique du Globe de Paris |
| HORIZON EUROPE Marie Sklodowska-Curie Actions |
| Agradecimiento |
|---|
| GdG, DFB, RA and RL acknowledge funding from the People Programme (Marie Sklodowska-Curie Actions) of the European Union's Seventh Framework Programme under the ITN project ALErT (Grant FP7-PEOPLE-2013-ITN number 607996). GdG also acknowledges a postdoctoral grant from the Centre National d'Etudes Spatiales (CNES, France). DM acknowledges financial support from the Millennium Nucleus The Seismic Cycle Along Subduction Zones funded by the Millennium Scientific Initiative (ICM) of the Chilean Government (grant 1150321) and Chilean National Fund for Development of Science and Technology (FONDECYT; grant 1181479). BM acknowledges financial support from DFG grant JA 2860/1-1. We thank Kurt Lambeck and Anthony Purcell for sharing the ANU GIA model and code. We thank Arthur Delorme for assistance in producing the DSM, Riccardo Caputo for SL curve data, Stephanie Bates for her spectral analysis code, and Marco Meschis and Jennifer Robertson for fruitful discussions. Numerical computations for the DSM were performed on the S-CAPAD platform, Institut de Physique du Globe de Paris (IPGP), France. This study contributes to the IdEx Universite de Paris ANR-18-IDEX-0001. This is IPGP contribution 4096. |
| GdG, DFB, RA and RL acknowledge funding from the People Programme (Marie Sklodowska-Curie Actions) of the European Union's Seventh Framework Programme under the ITN project ALErT (Grant FP7-PEOPLE-2013-ITN number 607996). GdG also acknowledges a postdoctoral grant from the Centre National d'Etudes Spatiales (CNES, France). DM acknowledges financial support from the Millennium Nucleus The Seismic Cycle Along Subduction Zones funded by the Millennium Scientific Initiative (ICM) of the Chilean Government (grant 1150321) and Chilean National Fund for Development of Science and Technology (FONDECYT; grant 1181479). JJM acknowledges financial support from DFG grant JA 2860/1-1. We thank Kurt Lambeck and Anthony Purcell for sharing the ANU GIA model and code. We thank Arthur Delorme for assistance in producing the DSM, Riccardo Caputo for SL curve data, Stephanie Bates for her spectral analysis code, and Marco Meschis and Jennifer Robertson for fruitful discussions. Numerical computations for the DSM were performed on the S-CAPAD platform, Institut de Physique du Globe de Paris (IPGP), France. This study contributes to the IdEx Universite? de Paris ANR-18-IDEX-0001. This is IPGP contribution 4096. |