Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CNSNS.2019.105089 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, a general method to establish the asymptotic behaviour of solutions to multi-order multiple time-varying delays nonlinear systems is proposed. The method, relying on vector Lyapunov-like functions and on comparison arguments, reduces the asymptotic stability problem to verify a Hurwitz property on a suitable matrix. Many results in integer order systems can be easily generalized to multi-order systems since the obtained conditions are order-independent. The latter fact is exploited to obtain robust results when the derivation order is uncertain. To establish the method, robust multi-order multiple time-varying delays linear positive systems are studied generalizing previous results existing in the literature. Two illustrative examples are presented, the main one providing conditions for asymptotic stability of a multi-agent multi-order system with time-varying delay. (C) 2019 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Gallegos, Javier A. | Hombre |
Universidad de Chile - Chile
|
| 2 | Aguila-Camacho, Norelys | - |
Universidad Tecnológica Metropolitana - Chile
|
| 3 | Duarte-Mermoud, Manuel | Hombre |
Universidad Tecnológica Metropolitana - Chile
|
| Fuente |
|---|
| FONDECYT |
| CONICYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| FONDECYT-Chile |
| CONICYTPCHA/National PhD scholarship program,2018 |
| CONICYTPCHA/National |
| Agradecimiento |
|---|
| The first author thanks to "CONICYTPCHA/National PhD scholarship program,2018". The second author thanks to CONICYT Project AFB180004 and FONDECYT-Chile, grants 11170154 and 1190959. The third author thanks to FONDECYT Project 1190959 andCONICYT ProjectAFB180004. |
| The first author thanks to “CONICYTPCHA/National PhD scholarship program,2018”. The second author thanks to CONICYT Project AFB180004 and FONDECYT-Chile, grants 11170154 and 1190959. The third author thanks to FONDECYT Project 1190959 and CONICYT Project AFB180004. |