Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1021/ACS.JCIM.9B00883 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Molecular simulations of large biological systems, such as viral capsids, remains a challenging task in soft matter research. On one hand, coarse-grained (CG) models attempt to make the description of the entire viral capsid disassembly feasible. On the other hand, the permanent development of novel molecular dynamics (MD) simulation approaches, like enhanced sampling methods, attempt to overcome the large time scales required for such simulations. Those methods have a potential for delivering molecular structures and properties of biological systems. Nonetheless, exploring the process on how a viral capsid disassembles by all-atom MD simulations has been rarely attempted. Here, we propose a methodology to analyze the disassembly process of viral capsids from a free energy perspective, through an efficient combination of dynamics using coarse-grained models and Poisson Boltzmann simulations. In particular, we look at the effect of pH and charge of the genetic material inside the capsid, and compute the free energy of a disassembly trajectory precalculated using CG simulations with the SIRAH force field. We used our multiscale approach on the Triatoma virus (TrV) as a test case, and find that even though an alkaline environment enhances the stability of the capsid, the resulting deprotonation of the genetic material generates a Coulomb-type electrostatic repulsion that triggers disassembly.
| WOS |
|---|
| Chemistry, Multidisciplinary |
| Computer Science, Interdisciplinary Applications |
| Computer Science, Information Systems |
| Chemistry, Medicinal |
| Scopus |
|---|
| Library And Information Sciences |
| Computer Science Applications |
| Chemistry (All) |
| Chemical Engineering (All) |
| SciELO |
|---|
| Sin Disciplinas |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Martinez, Matias | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Cooper, Christopher D. | Hombre |
Universidad Técnica Federico Santa María - Chile
Centro Científico Tecnológico de Valparaíso - Chile |
| 3 | Poma, Adolfo B. | Hombre |
Polish Acad Sci - Polonia
Institute of Fundamental Technological Research of the Polish Academy of Sciences - Polonia |
| 4 | Guzman, Horacio | Hombre |
Max Planck Inst Polymer Res - Alemania
Jozef Stefan Inst - Eslovenia Max Planck Institute for Polymer Research - Alemania Jozef Stefan Institute - Eslovenia Institut "Jožef Stefan" - Eslovenia |
| Fuente |
|---|
| Slovenian Research Agency |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Deutsche Forschungsgemeinschaft |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) |
| Narodowe Centrum Nauki |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| National Science Centre, Poland |
| Javna Agencija za Raziskovalno Dejavnost RS |
| CONICYT (Chile) through FONDECYT Iniciacion |
| Agradecimiento |
|---|
| The authors thank Matias Machado for providing us with initial configurations of the TrV capsids simulations and fruitful discussions regarding the SIRAH forcefield. In addition, the authors thank Torsten Stuehn, Tomasz Lipniacki and Simon Poblete for their feedback on the Manuscript. This research has been supported by the Slovenian Research Agency (Research Core Funding No. P1-0055); Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project Number 233630050, TRR 146; the National Science Centre, Poland, under Grant No. 2017/26/D/NZ1/00466, and by CONICYT (Chile) through FONDECYT Iniciacion No. 11160768 and Basal FB0821. The authors also thank the computer resources from CCTVa1 and MPCDF from the Max Planck Society. |
| The authors thank Matias Machado for providing us with initial configurations of the TrV capsids simulations and fruitful discussions regarding the SIRAH forcefield. In addition, the authors thank Torsten Stuehn, Tomasz Lipniacki and Simon Poblete for their feedback on the Manuscript. This research has been supported by the Slovenian Research Agency (Research Core Funding No. P1-0055); Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project Number 233630050, TRR 146; the National Science Centre, Poland, under Grant No. 2017/26/D/NZ1/00466, and by CONICYT (Chile) through FONDECYT Iniciación No. 11160768 and Basal FB0821. The authors also thank the computer resources from CCTVal and MPCDF from the Max Planck Society. |