Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Three-dimensional simulations of clump formation in stellar wind collisions
Indexado
WoS WOS:000518156100031
Scopus SCOPUS_ID:85088562468
DOI 10.1093/MNRAS/STAA090
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The inner parsec of our Galaxy contains tens of Wolf-Rayet stars whose powerful outflows are constantly interacting while filling the region with hot, diffuse plasma. Theoretical models have shown that, in some cases, the collision of stellar winds can generate cold, dense material in the form of clumps. However, their formation process and properties are not well understood yet. In this work, we present, for the first time, a statistical study of the clump formation process in unstable wind collisions. We study systems with dense outflows (similar to 10(-5) M-circle dot yr(-1)), wind speeds of 500-1500 km s(-1), and stellar separations of similar to 20-200 au. We develop three-dimensional high-resolution hydrodynamical simulations of stellar wind collisions with the adaptive-mesh refinement grid-based code RAMSES. We aim at characterizing the initial properties of clumps that form through hydrodynamic instabilities, mostly via the non-linear thin-shell instability (NTSI). Our results confirm that more massive clumps are formed in systems whose winds are close to the transition between the radiative and adiabatic regimes. Increasing either the wind speed or the degree of asymmetry increases the dispersion of the clump mass and ejection speed distributions. Nevertheless, the most massive clumps are very light (similar to 10(-3)-10(-2) M-circle plus), about three orders of magnitude less massive than theoretical upper limits. Applying these results to the Galactic Centre, we find that clumps formed through the NTSI should not be heavy enough either to affect the thermodynamic state of the region or to survive for long enough to fall on to the central supermassive black hole.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Astronomy & Astrophysics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 CALDERON-ESPINOZA, DIEGO NICOLAS Hombre Pontificia Universidad Católica de Chile - Chile
Max Planck Inst Extraterr Phys - Alemania
Charles Univ Prague - República Checa
Max Planck Institute for Extraterrestrial Physics - Alemania
Charles University - República Checa
Universidad de Chile - Chile
2 CUADRA-STIPETICH, JORGE RODRIGO Hombre Pontificia Universidad Católica de Chile - Chile
Universidad de Chile - Chile
3 Schartmann, M. Hombre Max Planck Inst Extraterr Phys - Alemania
Ludwig Maximilians Univ Munchen - Alemania
Univ Sternwarte Ludwig Maximilians Univ - Alemania
Max Planck Institute for Extraterrestrial Physics - Alemania
Ludwig-Maximilians-Universität München - Alemania
4 Burkert, A. Hombre Max Planck Inst Extraterr Phys - Alemania
Ludwig Maximilians Univ Munchen - Alemania
Univ Sternwarte Ludwig Maximilians Univ - Alemania
Max Planck Institute for Extraterrestrial Physics - Alemania
Ludwig-Maximilians-Universität München - Alemania
5 PRIETO-KATUNARIC, JOSE LUIS Hombre Universidad de Chile - Chile
6 Russell, C. M. P. Hombre Pontificia Universidad Católica de Chile - Chile
Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
CONICYT-PCHA/Doctorado Nacional
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Deutsche Forschungsgemeinschaft
CONICYT project Basal
Max Planck Society
Max-Planck-Gesellschaft
CONICYTPCHA/doctorado nacional
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy
Excellence Cluster ORIGINS

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We would like to thank Dr W. J. Henney for reviewing this article as his comments and suggestions helped to improve its quality. DC and JC acknowledge the kind hospitality of the Max Planck Institute for Extraterrestrial Physics as well as funding from the Max Planck Society through a 'Partner Group' grant. The authors acknowledge support from CONICYT project Basal AFB-170002. This research was supported by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy -EXC-2094-390783311. DC is supported by CONICYTPCHA/Doctorado Nacional (2015-21151574). CMPR is supported by FONDECYT grant 3170870. Numerical simulations were run on the HPC systems HYDRA and COBRA of the Max Planck Computing and Data Facility. Data analysis was carried out making use of the PYTHON package YT (Turk et al. 2011).
We would like to thank Dr W. J. Henney for reviewing this article as his comments and suggestions helped to improve its quality. DC and JC acknowledge the kind hospitality of the Max Planck Institute for Extraterrestrial Physics as well as funding from the Max Planck Society through a ‘Partner Group’ grant. The authors acknowledge support from CONICYT project Basal AFB–170002. This research was supported by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2094–390783311. DC is supported by CONICYT-PCHA/Doctorado Nacional (2015–21151574). CMPR is supported by FONDECYT grant 3170870. Numerical simulations were run on the HPC systems HYDRA and COBRA of the Max Planck Computing and Data Facility. Data analysis was carried out making use of the PYTHON package YT (Turk et al. 2011).

Muestra la fuente de financiamiento declarada en la publicación.