Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Orlicz-Sobolev nematic elastomers
Indexado
WoS WOS:000518367600019
Scopus SCOPUS_ID:85065124446
DOI 10.1016/J.NA.2019.04.012
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We extend the existence theorems in Barchiesi et al. (2017), for models of nematic elastomers and magnetoelasticity, to a larger class in the scale of Orlicz spaces. These models consider both an elastic term where a polyconvex energy density is composed with an unknown state variable defined in the deformed configuration, and a functional corresponding to the nematic energy (or the exchange and magnetostatic energies in magnetoelasticity) where the energy density is integrated over the deformed configuration. In order to obtain the desired compactness and lower semicontinuity, we show that the regularity requirement that maps create no new surface can still be imposed when the gradients are in an Orlicz class with an integrability just above the space dimension minus one. We prove that the fine properties of orientation-preserving maps satisfying that regularity requirement (namely, being weakly 1-pseudomonotone, H-1-continuous, a.e. differentiable, and a.e. locally invertible) are still valid in the Orlicz-Sobolev setting. (C) 2019 The Author (s). Published by Elsevier Ltd.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Mathematics, Applied
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 HENAO-MANRIQUE, DUVAN ALBERTO - Pontificia Universidad Católica de Chile - Chile
2 Stroffolini, Bianca Mujer Univ Napoli Federico II - Italia
Università Degli Studi di Napoli Federico II - Italia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Chilean Ministry of Education
Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica
Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica
Ministerio de Educacion, Gobierno de Chile
Università degli Studi di Napoli Federico II
University of Naples Project VAriational TECHniques in Advanced MATErials (VATEXMATE), Italy
FONDECYT project of the Chilean Ministry of Education
D.H.

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We are grateful to Carlos Mora-Corral for bringing to our attention the proof by Kauhanen, Koskela & Mal ' y of the Lusin's property satisfied by Orlicz-Sobolev maps. We also thank Stanislav Hencl to whom B.S. has spoken during the conference "Methods of Real Analysis and Theory of Elliptic Systems ", Rome. The research of D.H. and B.S. was supported, respectively, by the FONDECYT project 1150038 of the Chilean Ministry of Education and by University of Naples Project VAriational TECHniques in Advanced MATErials (VATEXMATE), Italy. The project has started during the visit of B.S. to Pontificia Universidad Cat ' olica de Chile in July 2018. She would like to thank for the friendly atmosphere during her visit.
We are grateful to Carlos Mora-Corral for bringing to our attention the proof by Kauhanen, Koskela & Malý of the Lusin’s property satisfied by Orlicz–Sobolevmaps. We also thank Stanislav Hencl to whom B.S. has spoken during the conference “Methods of Real Analysis and Theory of Elliptic Systems ”, Rome. The research of D.H. and B.S. was supported, respectively, by the FONDECYT project 1150038 of the Chilean Ministry of Education and by University of Naples Project VAriational TECHniques in Advanced MATErials (VATEXMATE), Italy . The project has started during the visit of B.S. to Pontificia Universidad Católica de Chile in July 2018. She would like to thank for the friendly atmosphere during her visit.

Muestra la fuente de financiamiento declarada en la publicación.