Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Multi-Scale Multivariate Models for Small Area Health Survey Data: A Chilean Example
Indexado
WoS WOS:000522389200222
Scopus SCOPUS_ID:85081571175
DOI 10.3390/IJERPH17051682
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Background: We propose a general approach to the analysis of multivariate health outcome data where geo-coding at different spatial scales is available. We propose multiscale joint models which address the links between individual outcomes and also allow for correlation between areas. The models are highly novel in that they exploit survey data to provide multiscale estimates of the prevalences in small areas for a range of disease outcomes. Results The models incorporate both disease specific, and common disease spatially structured components. The multiple scales envisaged is where individual survey data is used to model regional prevalences or risks at an aggregate scale. This approach involves the use of survey weights as predictors within our Bayesian multivariate models. Missingness has to be addressed within these models and we use predictive inference which exploits the correlation between diseases to provide estimates of missing prevalances. The Case study we examine is from the National Health Survey of Chile where geocoding to Province level is available. In that survey, diabetes, Hypertension, obesity and elevated low-density cholesterol (LDL) are available but differential missingness requires that aggregation of estimates and also the assumption of smoothed sampling weights at the aggregate level. Conclusions: The methodology proposed is highly novel and flexibly handles multiple disease outcomes at individual and aggregated levels (i.e., multiscale joint models). The missingness mechanism adopted provides realistic estimates for inclusion in the aggregate model at Provincia level. The spatial structure of four diseases within Provincias has marked spatial differentiation, with diabetes and hypertension strongly clustered in central Provincias and obesity and LDL more clustered in the southern areas.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Public, Environmental & Occupational Health
Environmental Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Lawson, Andrew Hombre Med Univ South Carolina - Estados Unidos
Medical University of South Carolina - Estados Unidos
2 Schritz, Anna Mujer Luxembourg Inst Hlth - Luxemburgo
Luxembourg Institute of Health - Luxemburgo
3 VILLARROEL-VILLARROEL, LUIS Hombre Pontificia Universidad Católica de Chile - Chile
4 AGUAYO-BONNIARD, GLORIA ALEJANDRA Mujer Luxembourg Inst Hlth - Luxemburgo
Luxembourg Institute of Health - Luxemburgo

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 100.0 %
Citas No-identificadas: 0.0 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 100.0 %
Citas No-identificadas: 0.0 %

Financiamiento



Fuente
Luxembourg Institute of Health
Ministry of Higher Education and Research, Luxembourg, through an internal project from the Luxembourg Institute of Health

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This study was funded by the Ministry of Higher Education and Research, Luxembourg, through an internal project from the Luxembourg Institute of Health (funding GAA). The first author (AL) received contract support from Luxembourg Institute of Health for this collaborative project.

Muestra la fuente de financiamiento declarada en la publicación.