Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Risk Factors for Post-Transplant Outcomes in Patients with LVAD Support: A Machine Learning and Logistic Regression of the UNOS Database
Indexado
WoS WOS:000522637203024
Scopus SCOPUS_ID:85085675603
DOI 10.1016/J.HEALUN.2020.01.169
Año 2020
Tipo resumen de reunión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Copyright © 2020. Published by Elsevier Inc.PURPOSE: Shortage of organs for transplantation and improvements in LVADs make the use of this technology common as bridge to transplant (BTT). Compared to traditional statistical methods, machine learning (ML) techniques provides improvement in predictive modeling, identifying dimensionality and non-linear relationships between variables. Thus, we investigated specific risk factors that predispose to poor outcomes in pts supported with LVAD as BTT using ML and logistic regression (LR). METHODS: We included all pts that had heart transplant between 2006 and 2016. The primary outcome was the composite of 1-year mortality and re-transplant. We utilized ML method and LR to find the most predictive variables associated with the primary outcome. We excluded post-transplant variables. Receiver operating characteristic (ROC) curve was constructed to investigate the discriminatory capacity of the model. RESULTS: Of 18,612 pts (52±12 years, 24.58% female), 7,700 (41.12%) were on LVAD support. The discriminatory capacity predicting the primary outcome using the same variables modeled with ML or LR methods was similar in pts with LVAD or without the device (AUCs 0.61 and 0.63, respectively) (Figure A and B). Using ML and LR, the top 5 variables that were associated with poor outcomes in pts supported with LVAD were the recipient total bilirubin, creatinine, predicted right ventricular (RV) mass, and total albumin, as well as ischemic time during transplant. For pts without LVAD, the top 5 variables that were identified using ML and LR, were recipient total bilirubin, creatinine, and ventilator use, as well as ischemic time and distance of the donor. CONCLUSION: Both ML and LR methods identified total bilirubin, creatinine, and ischemic time among the strongest risk predictors of poor outcomes after transplant in pts with and without an LVAD. Notably predicted RV mass of the recipient was an important variable for pts with LVAD as a BTT.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Surgery
Cardiac & Cardiovascular Systems
Respiratory System
Transplantation
Cardiac & Cardiovascular System
Scopus
Surgery
Pulmonary And Respiratory Medicine
Cardiology And Cardiovascular Medicine
Transplantation
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Bravo, Claudio A. Hombre Columbia Univ - Estados Unidos
Columbia University Irving Medical Center - Estados Unidos
2 Villela, M. Alvarez - Montefiore Med Ctr - Estados Unidos
Montefiore Medical Center - Estados Unidos
3 Shah, M. - Thomas Jefferson Univ Hosp - Estados Unidos
Thomas Jefferson University Hospital - Estados Unidos
4 Merekar, R. - Baruch Coll CUNY - Estados Unidos
Baruch College - Estados Unidos
5 Oliva Mella, P. - Universidad del Desarrollo - Chile
5 Mella, P. Oliva - Universidad del Desarrollo - Chile
6 Castellanos, A. - Baruch Coll CUNY - Estados Unidos
Baruch College - Estados Unidos
7 Colombo, P. C. - Columbia Univ - Estados Unidos
Columbia University Irving Medical Center - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.