Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1145/3321707.3321820 | ||||
| Año | 2019 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Limited payload capacity on small unmanned aerial vehicles (UAVs) results in restricted flight time. In order to increase the operational range of UAVs, recent research has focused on the use of mobile ground charging stations. The cooperative route planning for both aerial and ground vehicles (GVs) is strongly coupled due to fuel constraints of the UAV, terrain constraints of the GV and the speed differential of the two vehicles. This problem is, in general, an NP-hard combinatorial optimization problem. Existing polynomial-time solution approaches make a trade-off in solution quality for large-scale scenarios and generate solutions with large relative gaps (up to 50 %) from known lower bounds. In this work, we employ a hybrid metaheuristic known as Construct, Merge, Solve & Adapt (CMSA) in order to develop a scalable and computationally efficient solution approach. We discuss results for large scale scenarios and provide a comparative analysis with the current state-of-the-art.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Arora, Divansh | - |
IIIT Delhi - India
Indraprastha Institute of Information Technology, Delhi - India |
| 2 | PINACHO-DAVIDSON, PEDRO PABLO | Hombre |
Universidad de Concepción - Chile
|
| 3 | Maini, Parikshit | - |
IIIT Delhi - India
Indraprastha Institute of Information Technology, Delhi - India |
| 4 | Blum, Christian | Hombre |
CSIC - España
CSIC - Instituto de Investigacion en Inteligencia Artificial (IIIA) - España |
| 5 | LopezIbanez, M | - |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |