Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/0004-6361/202037595 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Context. Here we describe a simple, efficient, and most importantly fully operational point-spread-function (PSF)-reconstruction approach for laser-assisted ground layer adaptive optics (GLAO) in the frame of the Multi Unit Spectroscopic Explorer (MUSE) wide field mode.Aims. Based on clear astrophysical requirements derived by the MUSE team and using the functionality of the current ESO Adaptive Optics Facility we aim to develop an operational PSF-reconstruction (PSFR) algorithm and test it both in simulations and using on-sky data.Methods. The PSFR approach is based on a Fourier description of the GLAO correction to which the specific instrumental effects of MUSE wide field mode (pixel size, internal aberrations, etc.) have been added. It was first thoroughly validated with full end-to-end simulations. Sensitivity to the main atmospheric and AO system parameters was analysed and the code was re-optimised to account for the sensitivity found. Finally, the optimised algorithm was tested and commissioned using more than one year of on-sky MUSE data.Results. We demonstrate with an on-sky data analysis that our algorithm meets all the requirements imposed by the MUSE scientists, namely an accuracy better than a few percent on the critical PSF parameters including full width at half maximum and global PSF shape through the kurtosis parameter of a Moffat function.Conclusions. The PSFR algorithm is publicly available and is used routinely to assess the MUSE image quality for each observation. It can be included in any post-processing activity which requires knowledge of the PSF.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Fusco, T. | Hombre |
Univ Paris Saclay - Francia
Aix Marseille Univ - Francia Universite Paris-Saclay - Francia Laboratoire d'Astrophysique de Marseille - Francia |
| 2 | Bacon, R. | Hombre |
Univ Lyon1 - Francia
Centre de Recherche Astrophysique de Lyon - Francia Ecole Normale Supérieure de Lyon - Francia |
| 3 | Kamann, Sebastian | Hombre |
Liverpool John Moores Univ - Reino Unido
Liverpool John Moores University - Reino Unido |
| 4 | Conseil, Simon | Hombre |
Univ Lyon1 - Francia
Observatorio Gemini - Chile Centre de Recherche Astrophysique de Lyon - Francia Gemini ObservatorySouthern Operations Center - Chile Ecole Normale Supérieure de Lyon - Francia |
| 5 | Neichel, Benoit | Hombre |
Aix Marseille Univ - Francia
Laboratoire d'Astrophysique de Marseille - Francia |
| 6 | Carrasco-Gonzalez, Carlos | Hombre |
Aix Marseille Univ - Francia
Laboratoire d'Astrophysique de Marseille - Francia |
| 7 | Beltramo-Martin, O. | - |
Univ Paris Saclay - Francia
Aix Marseille Univ - Francia Universite Paris-Saclay - Francia Laboratoire d'Astrophysique de Marseille - Francia |
| 8 | Vernet, J. | Hombre |
ESO - Alemania
Observatorio Europeo Austral - Alemania European Southern Observ - Alemania |
| 9 | Kolb, Johann | Hombre |
ESO - Alemania
Observatorio Europeo Austral - Alemania European Southern Observ - Alemania |
| 10 | Madec, Pierre-Yves | Hombre |
ESO - Alemania
Observatorio Europeo Austral - Alemania European Southern Observ - Alemania |
| Fuente |
|---|
| European Commission |
| European Research Council |
| Horizon 2020 Framework Programme |
| European Research Council consolidator grant |
| OPTICON, in the Horizon 2020 Framework Program of the European Commission's |
| ANR-APPLY program |
| ANR-APPLY |
| Horizon 2020 Framework Program of the European Commission's |
| Horizon 2020 Framework Program of the European Commission’s |
| Agradecimiento |
|---|
| This work has been partially supported by the ANR-APPLY program (ANR-19-CE31-0011), the European Research Council consolidator grant (ERC-CoG-646928-Multi-Pop) and by OPTICON, in the Horizon 2020 Framework Program of the European Commission's (Grant number 730890 - OPTICON). |
| This work has been partially supported by the ANRAPPLY program (ANR-19-CE31-0011), the European Research Council consolidator grant (ERC-CoG-646928-Multi-Pop) and by OPTICON, in the Horizon 2020 Framework Program of the European Commission's (Grant number 730890 - OPTICON). |