Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S13235-020-00355-Y | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the ergodicity of deterministic two-person zero-sum differential games. This property is defined by the uniform convergence to a constant of either the infinite-horizon discounted value as the discount factor tends to zero, or equivalently, the averaged finite-horizon value as the time goes to infinity. We provide necessary and sufficient conditions for the unique ergodicity of a game. This notion extends the classical one for dynamical systems, namely when ergodicity holds with any (suitable) perturbation of the running payoff function. Our main condition is symmetric between the two players and involve dominions, i.e., subsets of states that one player can make approximately invariant.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Hochart, Antoine | Hombre |
Universidad Adolfo Ibáñez - Chile
|