Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10957-019-01613-9 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The notions of upper and lower global directional derivatives are introduced for dealing with nonconvex and nonsmooth optimization problems. We provide calculus rules and monotonicity properties for these notions. As a consequence, new formulas for the Dini directional derivatives, radial epiderivatives and generalized asymptotic functions are given in terms of the upper and lower global directional derivatives. Furthermore, a mean value theorem, which extend the well-known Diewert's mean value theorem for radially upper and lower semicontinuous functions, is established. We also provide necessary and sufficient optimality conditions for a point to be a local and/or global solution for the nonconvex minimization problem. Finally, applications for nonconvex and nonsmooth mathematical programming problems are also presented.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | LARA-OBREQUE, FELIPE | Hombre |
Universidad de Tarapacá - Chile
|