Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Numerical Study of Graphene Heat Spreaders for a THz Quantum Diode Based on a G-MGIM Junction Graphene Heat Spreaders for a Quantum Diode Junction Made of Graphene-Metal-Graphene-Insulator-Metal
Indexado
WoS WOS:000528800000001
Scopus SCOPUS_ID:85083976297
DOI 10.1007/S10765-020-02659-Y
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In the context of a numerical study about mid-infrared receivers based on a metal-insulator-metal junction, we study how a top multilayer of graphene is capable to remove heat from the thin metal layer in which the laser impinges on. Due to its extremely high thermal conductivity, the graphene film (made of several layers) extracts the heat and injects it inside bulky lateral metal paddings of the receiver. Therefore, the lateral metal contacts not only detect the electromagnetic field transforming it into a current through this quantum diode, but they can also help to drain the heat. A metal-insulator-metal junction, which combines Kretschmann illumination and a distributed light on the junction (or are illuminated through a grating), allows introducing the electromagnetic field into the junction, biasing in this manner the insulator all along its entire length. The main challenge is the relationship between the insulator thickness and the electromagnetic wavelength. In the mid-infrared region, the insulator thickness of a few nanometers is several orders of magnitude under the diffraction limit, and the electromagnetic field cannot penetrate directly into the structure. In this way, the described technique delivers the infrared radiation into the junction by means of surface-plasmon-polariton traveling wave (SPP-TW). Therefore, a right illumination improves the diode responsivity considerably. However, rectification demands an extremely asymmetrical current-voltage curve. A layered metal-graphene-insulator-metal makes this feasible especially when an SPP-TW, between the graphene and the insulator, establishes a Seebeck effect resulting in the desired asymmetric characteristic. When sampling, the rectified direct tunneling current is desirable to avoid thermionic emission (inherently slow), as well as to induce the SPP-TW in a better form from the outside of the junction. A cooling mechanism that preserves a high electric conductivity on the top metal contact is required. In this theoretical work, we performed a simulation study of how a sheet of graphene is able to enhance the thermal behavior of the receiver under study.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Thermodynamics
Mechanics
Chemistry, Physical
Physics, Applied
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Moreno, E. Hombre Astrophoton Grp UChile - Chile
Universidad de Chile - Chile
2 Roldan, J. B. Hombre UNIV GRANADA - España
Universidad de Granada - España
3 Emadi, R. - Astrophoton Grp UChile - Chile
Universidad de Chile - Chile
4 Michael, E. Hombre Astrophoton Grp UChile - Chile
Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Project Fondecyt
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondo Nacional de Desarrollo Científico y Tecnológico

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work has been supported by Project FONDECYT number 3180130. The authors would like to thank the National Laboratory for High Performance Computing of Chile for the resources provided.
This work has been supported by Project FONDECYT number 3180130. The authors would like to thank the National Laboratory for High Performance Computing of Chile for the resources provided.

Muestra la fuente de financiamiento declarada en la publicación.