Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/MATH8040507 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This article proposes a hybrid algorithm that makes use of the db-scan unsupervised learning technique to obtain binary versions of continuous swarm intelligence algorithms. These binary versions are then applied to large instances of the well-known multidimensional knapsack problem. The contribution of the db-scan operator to the binarization process is systematically studied. For this, two random operators are built that serve as a baseline for comparison. Once the contribution is established, the db-scan operator is compared with two other binarization methods that have satisfactorily solved the multidimensional knapsack problem. The first method uses the unsupervised learning technique k-means as a binarization method. The second makes use of transfer functions as a mechanism to generate binary versions. The results show that the hybrid algorithm using db-scan produces more consistent results compared to transfer function (TF) and random operators.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | GARCIA-CONEJEROS, JOSE ANTONIO | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 2 | Moraga, Paola | Mujer |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 3 | VALENZUELA-SAAVEDRA, MATIAS ANDRES | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 4 | Pinto, H. | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|