Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10957-020-01667-0 | ||||
| Año | 2020 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study vector optimization problems with solid non-polyhedral convex ordering cones, without assuming any convexity or quasiconvexity assumption. We state a Weierstrass-type theorem and existence results for weak efficient solutions for coercive and noncoercive problems. Our approach is based on a new coercivity notion for vector-valued functions, two realizations of the Gerstewitz scalarization function, asymptotic analysis and a regularization of the objective function. We define new boundedness and lower semicontinuity properties for vector-valued functions and study their properties. These new tools rely heavily on the solidness of the ordering cone through the notion of colevel and level sets. As a consequence of this approach, we improve various existence results from the literature, since weaker assumptions are required.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Gutierrez, Cesar | Hombre |
UNIV VALLADOLID - España
Universidad de Valladolid - España |
| 2 | LOPEZ-MONTOYA, RUBEN LUIS | Hombre |
Universidad de Tarapacá - Chile
|
| Fuente |
|---|
| Ministerio de Economía y Competitividad |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| European Regional Development Fund |
| MINECO/FEDER |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Ministerio de Ciencia, Innovacion y Universidades |
| Ministerio de EconomÃa y Competitividad |
| Ministerio de Ciencia, Innovaci?n y Universidades |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| Agencia Estatal de Investigación |
| Agencia Estatal de Investigación |
| Ministerio de Economia y Competitividad (Spain) |
| Ministerio de Ciencia, Innovación y Universidades |
| Universidad de Tarapac? |
| ANID (Chile) under Project Fondecyt |
| Fondo Europeo de Desarrollo Regional (FEDER, UE) |
| Ministerio de Ciencia, Innovacion y Universidades (MCIU), Agencia Estatal de Investigacion (AEI) (Spain) |
| ANID |
| Agencia Nacional de Investigación y Desarrollo |
| Agradecimiento |
|---|
| The authors are very grateful to the anonymous referees for their helpful comments and suggestions. This work was carried out mainly in July 2017 and July 2019, during two research stays of the first author in the Departamento de Matematica at Universidad de Tarapaca, Arica, Chile. He wish to thank all the staff for its warm hospitality. This research was partially supported by Ministerio de Economia y Competitividad (Spain) under Project MTM2015-68103-P (MINECO/FEDER), by Ministerio de Ciencia, Innovacion y Universidades (MCIU), Agencia Estatal de Investigacion (AEI) (Spain) and Fondo Europeo de Desarrollo Regional (FEDER, UE) under Project PGC2018-096899-B-I00 and for the second author by ANID (Chile) under Project Fondecyt 1181368. |
| The authors are very grateful to the anonymous referees for their helpful comments and suggestions. This work was carried out mainly in July 2017 and July 2019, during two research stays of the first author in the Departamento de Matem?tica at Universidad de Tarapac?, Arica, Chile. He wish to thank all the staff for its warm hospitality. This research was partially supported by Ministerio de Econom?a y Competitividad (Spain) under Project MTM2015-68103-P (MINECO/FEDER), by Ministerio de Ciencia, Innovaci?n y Universidades (MCIU), Agencia Estatal de Investigaci?n (AEI) (Spain) and Fondo Europeo de Desarrollo Regional (FEDER, UE) under Project PGC2018-096899-B-I00 and for the second author by ANID (Chile) under Project Fondecyt 1181368. |