Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
Indexado
WoS WOS:000501488900007
Scopus SCOPUS_ID:85073801948
DOI 10.1145/3331184.3331262
Año 2019
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Hate speech is an important problem that is seriously affecting the dynamics and usefulness of online social communities. Large scale social platforms are currently investing important resources into automatically detecting and classifying hateful content, without much success. On the other hand, the results reported by state-of-the-art systems indicate that supervised approaches achieve almost perfect performance but only within specific datasets. In this work, we analyze this apparent contradiction between existing literature and actual applications. We study closely the experimental methodology used in prior work and their generalizability to other datasets. Our findings evidence methodological issues, as well as an important dataset bias. As a consequence, performance claims of the current state-of-the-art have become significantly overestimated. The problems that we have found are mostly related to data overfitting and sampling issues. We discuss the implications for current research and re-conduct experiments to give a more accurate picture of the current state-of-the art methods.

Revista



Revista ISSN
978-1-4503-6172-9

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Arango, Aymé - Universidad de Chile - Chile
2 PEREZ-ROJAS, JORGE ADRIAN Hombre Universidad de Chile - Chile
3 POBLETE-LABRA, BARBARA JEANNETTE Mujer Universidad de Chile - Chile
4 ACM Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondo Nacional de Desarrollo Científico y Tecnológico
Millennium Institute for Foundational Research on Data (IMFD)
IMFD

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank Thomas Davidson for providing all the information concerning the dataset described in Davidson et al. [8]. This work was supported by the Millennium Institute for Foundational Research on Data (IMFD). Poblete was also funded by Fondecyt grant 1191604.
We thank Thomas Davidson for providing all the information concerning the dataset described in Davidson et al. [8]. This work was supported by the Millennium Institute for Foundational Research on Data (IMFD). Poblete was also funded by Fondecyt grant 1191604.

Muestra la fuente de financiamiento declarada en la publicación.