Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1145/3331184.3331300 | ||||
| Año | 2019 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The sheer amount of newsworthy information published by users in social media platforms makes it necessary to have efficient and effective methods to filter and organize content. In this scenario, off-the-shelf methods fail to process large amounts of data, which is usually approached by adding more computational resources. Simple data aggregations can help to cope with space and time constraints, while at the same time improve the effectiveness of certain applications, such as topic detection or summarization. We propose a lightweight representation of newsworthy social media data. The proposed representation leverages microblog features, such as redundancy and re-sharing capabilities, by using surrogate texts from shared URLs and word embeddings. Our representation allows us to achieve comparable clustering results to those obtained by using the complete data, while reducing running time and required memory. This is useful when dealing with noisy and raw user-generated social media data.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | QUEZADA-VEAS, MAURICIO DANIEL | Hombre |
Universidad de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile |
| 2 | POBLETE-LABRA, BARBARA JEANNETTE | Mujer |
Universidad de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile |
| 3 | ACM | Corporación |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Millennium Institute for Foundational Research on Data (IMFD) |
| Millennium Institute for Foundational Research on Data (IMFD) |
| CONICYT PCHA/Doctorado Nacional |
| IMFD |
| CONICYT PCHA/Doctorado Nacional 2015/21151445 |
| Agradecimiento |
|---|
| This work was supported by the Millennium Institute for Foundational Research on Data (IMFD). M. Quezada was also supported by CONICYT PCHA/Doctorado Nacional 2015/21151445. |
| This work was supported by the Millennium Institute for Foundational Research on Data (IMFD). M. Quezada was also supported by CONICYT PCHA/Doctorado Nacional 2015/21151445. |