Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Proposed Model-driven Approach to Manage Architectural Technical Debt Life Cycle
Indexado
WoS WOS:000502789500017
Scopus SCOPUS_ID:85071146151
DOI 10.1109/TECHDEBT.2019.00025
Año 2019
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Architectural Technical Debt (ATD) is a metaphor used to describe consciously decisions taken by software architects to accomplish short-term goals but possibly negatively affecting the long-term health of the system. However, difficulties arise when repayment strategies are defined because software architects need to be aware of the consequences of these strategies over others decisions in the software architecture. This article proposes REBEL, a semi-automated model-driven approach that exploits natural language processing, machine learning and model checking techniques on heterogeneous project artifacts to build a model that allows to locate and visualize the impact produced by the consciously injected ATD and its repayment strategy on the other architectural decisions. The technique is illustrated with a data analytics project in Colombia where software architects are unaware of the consequences of the repayment strategies. This proposal seeks to support teams of architects to make explicit the current and future impact of the ATD injected as a result of decisions taken, focusing on the architectural level rather than code level.

Revista



Revista ISSN
978-1-7281-3371-3

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Perez, Boris Hombre Universidad de Los Andes, Chile - Colombia
Universidad Técnica Federico Santa María - Chile
Universidad de Los Andes, Colombia - Colombia
2 Correal, Dario Hombre Universidad de Los Andes, Chile - Colombia
Universidad de Los Andes, Colombia - Colombia
3 ASTUDILLO-ROJAS, HERNAN ENRIQUE Hombre Universidad Técnica Federico Santa María - Chile
Universidad de Los Andes, Colombia - Colombia
4 IEEE Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)
Ministry of Information Technologies and Telecommunications of the Republic of Colombia (MinTIC) through the Colombian Administrative Department of Science, Technology and Innovation (COLCIENCIAS)
Center of Excellence and Appropriation in Big Data and Data Analytics
Department of Science, Information Technology and Innovation, Queensland Government
Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)
Ministry of Information Technologies and Telecommunicationsof the Republic of Colombia
Ministry of Information Technologies and Telecommunications of the Republic of Colombia

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research is carrying out by the Center of Excellence and Appropriation in Big Data and Data Analytics (CAOBA), supported by the Ministry of Information Technologies and Telecommunications of the Republic of Colombia (MinTIC) through the Colombian Administrative Department of Science, Technology and Innovation (COLCIENCIAS) within contract No. FP44842-anexo46-2015.
This research is carrying out by the Center of Excellence and Appropriation in Big Data and Data Analytics (CAOBA), supported by the Ministry of Information Technologies and Telecommunications of the Republic of Colombia (MinTIC) through the Colombian Administrative Department of Science, Technology and Innovation (COLCIENCIAS) within contract No. FP44842-anexo46-2015.

Muestra la fuente de financiamiento declarada en la publicación.