Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/M2AN/2019039 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Based on the Uzawa algorithm, we consider an adaptive finite element method for the Stokes system. We prove linear convergence with optimal algebraic rates for the residual estimator (which is equivalent to the total error), if the arising linear systems are solved iteratively, e.g., by PCG. Our analysis avoids the use of discrete efficiency of the estimator. Unlike prior work, our adaptive Uzawa algorithm can thus avoid to discretize the given data and does not rely on an interior node property for the refinement.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Di Fratta, Giovanni | Hombre |
TU Wien - Austria
Technische Universität Wien - Austria |
| 2 | Fuhrer, Thomas | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 3 | Gantner, Gregor | Hombre |
TU Wien - Austria
Technische Universität Wien - Austria |
| 4 | Praetorius, D. | Hombre |
TU Wien - Austria
Technische Universität Wien - Austria |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Consejo Nacional de Innovacion, Ciencia y Tecnologia |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Austrian Science Fund (FWF) |
| CONICYT through FONDECYT project |
| Austrian Science Fund |
| Agradecimiento |
|---|
| The authors thankfully acknowledge the support by the Austrian Science Fund (FWF) through grant P27005 (DP), P29096 (GG, DP), as well as grant F65 (GDF, DP) and by CONICYT through FONDECYT project P11170050 (TF). Moreover, GG thanks Peter Binev for his explanations on [4, 5]. |
| The authors thankfully acknowledge the support by the Austrian Science Fund (FWF) through grant P27005 (DP), P29096 (GG, DP), as well as grant F65 (GDF, DP) and by CONICYT through FONDECYT project P11170050 (TF). Moreover, GG thanks Peter Binev for his explanations on [4,5]. |