Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Controlling risk and demand ambiguity in newsvendor models
Indexado
WoS WOS:000481560600013
Scopus SCOPUS_ID:85068478873
DOI 10.1016/J.EJOR.2019.06.036
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We use distributionally robust optimization (DRO) to model a general class of newsvendor problems with unknown demand distribution. The goal is to find an order quantity that minimizes the worst-case expected cost among an ambiguity set of distributions. The ambiguity set consists of those distributions that are not far-in the sense of the total variation distance-from a nominal distribution. The maximum distance allowed in the ambiguity set (called level of robustness) places the DRO between the risk-neutral stochastic programming and robust optimization models. An important problem a decision maker faces is how to determine the level of robustness-or, equivalently, how to find an appropriate level of risk-aversion. We answer this question in two ways. Our first approach relates the level of robustness and risk to the regions of demand that are critical (in a precise sense we introduce) to the optimal cost. Our second approach establishes new quantitative relationships between the DRO model and the corresponding risk-neutral and classical robust optimization models. To achieve these goals, we first focus on a single-product setting and derive explicit formulas and properties of the optimal solution as a function of the level of robustness. Then, we demonstrate the practical and managerial relevance of our results by applying our findings to a healthcare problem to reserve operating room time for cardiovascular surgeries. Finally, we extend some of our results to the multi-product setting and illustrate them numerically. (C) 2019 Elsevier B.V. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Operations Research & Management Science
Scopus
Computer Science (All)
Management Science And Operations Research
Modeling And Simulation
Information Systems And Management
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Rahimian, Hamed Hombre NORTHWESTERN UNIV - Estados Unidos
Northwestern University - Estados Unidos
Robert R. McCormick School of Engineering and Applied Science - Estados Unidos
2 Bayraksan, Guzin Mujer OHIO STATE UNIV - Estados Unidos
The Ohio State University - Estados Unidos
College of Engineering - Estados Unidos
3 Homem-de-Mello, Tito Hombre Universidad Adolfo Ibáñez - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Fondo Nacional de Desarrollo Científico y Tecnológico
U.S. Department of Energy
Ohio State University
Fondecyt, Chile
Office of Science
Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica
Advanced Scientific Computing Research
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR)
Graduate School at The Ohio State University
Graduate School, University of Oregon
Graduate School, Ohio State University

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
First author gratefully acknowledges the support provided by a Presidential Fellowship from the Graduate School at The Ohio State University. The second author gratefully acknowledges the support of the National Science Foundation through grant CMMI-1563504 and the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR) under Contract DE-ACO2-06CH11347. The third author acknowledges the support of grant FONDECYT 1171145, Chile.
First author gratefully acknowledges the support provided by a Presidential Fellowship from the Graduate School at The Ohio State University. The second author gratefully acknowledges the support of the National Science Foundation through grant CMMI-1563504 and the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR) under Contract DE-AC02-06CH11347. The third author acknowledges the support of grant FONDECYT 1171145 , Chile.

Muestra la fuente de financiamiento declarada en la publicación.