Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A filtering technique for fast Convex Hull construction in R<SUP>2</SUP>
Indexado
WoS WOS:000488995800025
Scopus SCOPUS_ID:85069687651
DOI 10.1016/J.CAM.2019.06.014
Año 2020
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This work presents an optimization technique that reduces the computational cost for building the Convex Hull from a set of points. The proposed method pre-processes the input set, filtering all points inside an eight-vertex polygon in O(n) time and returns a reduced set of candidate points, ordered and distributed across four priority queues. Experimental results show that for a normal distribution of points in two-dimensional space, the filtering approach in conjunction with the Graham scan is up to 10x faster than the qhull library, and between 1.7x to 10x faster than the Convex Hull methods available in the CGAL library. Results on the worst case scenario (when all points lie in the circumference) show that a slight random radial displacement of the points make this method the fastest one. Moreover, when increasing the magnitude of this displacement, the performance of the proposed method scales at a faster rate than the other methods. In terms of memory efficiency, the proposed implementation manages to use from 3x to 6x less memory than the other methods. The reason behind this memory improvement is because the proposed method stores indices of the input arrays, avoiding duplicates of the original floating points. Furthermore, the approach extends the problem size up to n <= 2(40) by employing 5-byte indices (instead of 8-bytes) when n >= 2(32). The optimization technique presented in this work has shown to be significantly useful in accelerating the computation of the Convex Hull, and it is not limited just to the combination with the Graham scan, but it can also be used in conjunction with other Convex Hull algorithms. (C) 2019 Elsevier B.V. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics, Applied
Scopus
Applied Mathematics
Computational Mathematics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 FERRADA-ESCOBAR, HECTOR RICARDO Hombre Universidad Austral de Chile - Chile
2 NAVARRO-GUERRERO, CRISTOBAL ALEJANDRO Hombre Universidad Austral de Chile - Chile
3 HITSCHFELD-KAHLER, NANCY VIOLA Mujer Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.