Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.ESWA.2019.07.005 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The experimental dataset contains the records along 3 years of operation of the hospital ED. It consists of 189,718 patients visits to the hospital. The clinical outcome of 9271 cases (4.98%) wa hospital admission, therefore our dataset is highly class imbalanced. Our reported performance comparison results focus on four ML models: Deep Learning (DL), Random Forest (RF), Naive Bayes (NB) and Support Vector Machines (SVM). Data preprocessing includes class imbalance correction, and case re-labeling. We use different well known metrics to evaluate performance of ML models in three different experimental settings: (a) classification of each case into the standard five Triage urgency levels, (b) discrimination of high versus low case severity according to its clinical outcome, and (c) comparison of the number of patients assigned to each standard Triage urgency level against the Triage rule based expert system currently in use at the hospital. RF achieved greater AUC, accuracy, PPV and specificity than the other models in the dychotomic classification experiments. On the implementation side, our study shows that ML predictive models trained according to clinical outcomes, provide better Triage performance than the current rule based expert system in operation at the hospital. (C) 2019 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | WOLFF-ROJAS, PATRICIO ANTONIO | Hombre |
Universidad de Chile - Chile
|
| 2 | RIOS-PEREZ, SEBASTIAN ALEJANDRO | Hombre |
Universidad de Chile - Chile
|
| 3 | Grana, Manuel | Hombre |
Univ Basque Country - España
Universidad del País Vasco - España |
| Fuente |
|---|
| CONICYT-PCHA/Doctorado Nacional |
| Ministerio de Economía y Competitividad |
| Comisión Nacional de Investigación Científica y Tecnológica |
| European Regional Development Fund |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Consejo Nacional de Innovacion, Ciencia y Tecnologia |
| Ministerio de EconomÃa y Competitividad |
| CONICYT-PCHA/Doctorado |
| Computational Intelligence Group |
| Elkartek 2018 call project from the Basque Government |
| FEDER in the MINECO |
| Comison Nacional de Investigacion Cientifica y Tecnologica, Programa de Formacion de Capital Humano avanzado |
| Eusko Jaurlaritza |
| Doctorado Nacional |
| Programa de formacion de capital humano avanzado |
| Agradecimiento |
|---|
| Authors would like to thank Ms. Begona Yarza, M.D. for the support and positive suggestions to enhance this work. This research was partially funded by Comison Nacional de Investigacion Cientifica y Tecnologica, Programa de Formacion de Capital Humano avanzado (CONICYT-PCHA/Doctorado Nacional/2015-21150115) and the Computational Intelligence Group as grant IT874-13, and Elkartek 2018 call project KK-2018/00071 from the Basque Government. Additional support come from FEDER in the MINECO funded project TIN2017-85827-P. |
| The authors declare that they do not have any conflict of interest. Authors would like to thank Ms. Bego?a Yarza, M.D. for the support and positive suggestions to enhance this work. This research was partially funded by Comis?n Nacional de Investigaci?n Cient?fica y Tecnol?gica, Programa de Formaci?n de Capital Humano avanzado (CONICYT-PCHA/Doctorado Nacional/2015-21150115) and the Computational Intelligence Group as grant IT874-13, and Elkartek 2018 call project KK-2018/00071 from the Basque Government. Additional support come from FEDER in the MINECO funded project TIN2017-85827-P. |