Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A column generation approach to multiscale capacity planning for power-intensive process networks
Indexado
WoS WOS:000492034800004
Scopus SCOPUS_ID:85064452473
DOI 10.1007/S11081-019-09435-4
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Due to the high volatility in electricity prices, power-intensive industrial plants often have to frequently shift load in order to remain cost-competitive. Capacity planning is required for assessing the value of additional operational flexibility and planning for expected changes in product demand. Here, the main challenge lies in the simultaneous consideration of long-term capacity planning and short-term operational decisions. In this work, we extend the multiscale model proposed by Mitra et al. (Comput Chem Eng 65:89-101, 2014a) to a formulation that applies a general process network representation and incorporates inventory handling across seasons. We propose a column generation approach to solve large instances of the resulting mixed-integer linear program (MILP). The algorithm decomposes the original problem into multiple MILP subproblems, while the restricted master problem is an integer program. Computational experiments demonstrate the effectiveness of the column generation algorithm, which clearly outperforms the full-space model, especially with increasing number of years in the planning horizon. Also, the results show that the master problem tends to yield integer solutions within the required optimality gap due to its strong linear programming relaxation, such that no further branching is required. Moreover, the proposed approach is applied to perform capacity planning for a real-world industrial air separation plant.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Multidisciplinary
Mathematics, Interdisciplinary Applications
Operations Research & Management Science
Scopus
Civil And Structural Engineering
Electrical And Electronic Engineering
Software
Control And Optimization
Aerospace Engineering
Mechanical Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Flores-Quiroz, Angela Mujer Universidad de Chile - Chile
2 Pinto, Jose M. Hombre Praxair Inc - Estados Unidos
3 Zhang, Qi - Univ Minnesota - Estados Unidos
University of Minnesota - Estados Unidos
University of Minnesota Twin Cities - Estados Unidos
College of Science and Engineering - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
NLHPC

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Muestra la fuente de financiamiento declarada en la publicación.