Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1142/S0218196719500619 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study commutative algebras satisfying the identity (xx)(xx) - lambda((xx)x)x = 0. It is known that for lambda = 1 and for characteristic not 2,3 or 5, the algebra is a commutative power-associative algebra. These algebras have been widely studied by Albert, Gerstenhaber and Schafer. For lambda = 0, Guzzo and Behn in 2014 proved that commutative algebras of dimension <= 7 satisfying (xx)(xx) = 0 are solvable. We consider the remaining values of lambda. We prove that commutative algebras satisfying (xx)(xx)-lambda((xx)x)x = 0 with lambda not equal 0, 1, and generated by one element are nilpotent of nilindex <= 8 (we assume characteristic of the field not equal 2, 3).
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ARENAS-ABARCA, MANUEL | Hombre |
Universidad Tecnológica Metropolitana - Chile
|
| 2 | Hentzel, Irvin Roy | Hombre |
Iowa State Univ - Estados Unidos
Iowa State University - Estados Unidos |
| 3 | LABRA-JELDRES, ALICIA CARMEN | Mujer |
Universidad de Chile - Chile
|