Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1002/BIMJ.201800124 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The concordance correlation coefficient (CCC) and the probability of agreement (PA) are two frequently used measures for evaluating the degree of agreement between measurements generated by two different methods. In this paper, we consider the CCC and the PA using the bivariate normal distribution for modeling the observations obtained by two measurement methods. The main aim of this paper is to develop diagnostic tools for the detection of those observations that are influential on the maximum likelihood estimators of the CCC and the PA using the local influence methodology but not based on the likelihood displacement. Thus, we derive first- and second-order measures considering the case-weight perturbation scheme. The proposed methodology is illustrated through a Monte Carlo simulation study and using a dataset from a clinical study on transient sleep disorder. Empirical results suggest that under certain circumstances first-order local influence measures may be more powerful than second-order measures for the detection of influential observations.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Leal, Carla | Mujer |
Univ Villa Mar - Chile
Universidad de Viña del Mar - Chile |
| 2 | GALEA-ROJAS, MANUEL JESUS | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | OSORIO-SALGADO, FELIPE | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Merck |
| Agradecimiento |
|---|
| Fondo Nacional de Desarrollo Cientifico y Tecnologico, Grant/Award Numbers: 1140580, 1150325 |
| The authors are grateful to Dai Feng and Vladimir Svetnik from Merck & Co. Inc. for providing the data about transient sleep disorder. This work was supported by Comisión Nacional de Investigación Científica y Tecnológica, FONDECYT grants 1140580 and 1150325. The authors acknowledge the suggestions from two anonymous referees and an associate editor which helped to improve the manuscript. |