Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JFOODENG.2008.01.011 | ||||
| Año | 2008 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Batch distillation is a traditional and widely-used technique to produce Pisco brandy, a young spirit made from Muscat wine. It is necessary to track a given ethanol composition in the distillate in order to obtain a reproducible spirit with a desired aromatic profile. The use of multiple ethanol sensors represents a considerable cost, which prevents many distilleries from adopting this technology. Aiming to provide practical and affordable industrial-scale distillation control technology, we developed a soft-sensor to estimate distillate ethanol concentration on-line based on four temperature measurements in the still. The soft-sensor, calibrated with laboratory and industrial experimental data, consisted of an Artificial Neural Network and involved simple data pre-processing procedures. Simplicity and good performance were the metrics adopted for testing different algorithms and network structures. Returning mean prediction errors of +/- 0.6% v/v with laboratory scale distillations and +/- 1.6% v/v in industrial trials, the resulting accuracy of the soft-sensor is sufficient to improve standard practice and reproducibility. (c) 2008 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Osorio, Daniel | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | PEREZ-CORREA, JOSE RICARDO | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | AGOSIN-TRUMPER, EDUARDO | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Cabrera, Miguel | Hombre |
Compania Pisquera Chile SA - Chile
Cia Pesquera Camanchaca S.A. - Chile |