Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10208-006-0221-6 | ||||
| Año | 2008 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the problem of finding a singularity of a differentiable vector field X defined on a complete Riemannian manifold. We prove a unified result for the existence and local uniqueness of the solution, and for the local convergence of a Riemannian version of Newton's method. Our approach relies on Kantorovich's majorant principle: under suitable conditions, we construct an auxiliary scalar equation phi(r) = 0 which dominates the original equation X(p) = 0 in the sense that the Riemannian-Newton method for the latter inherits several features of the real Newton method applied to the former. The majorant phi is derived from an adequate radial parametrization of a Lipschitz-type continuity property of the covariant derivative of X, a technique inspired by the previous work of Zabrejko and Nguen on Newton's method in Banach spaces. We show how different specializations of the main result recover Riemannian versions of Kantorovich's theorem and Smale's alpha-theorem, and, at least partially, the Euclidean self-concordant theory of Nesterov and Nemirovskii. In the specific case of analytic vector fields, we improve recent developments inthis area by Dedieu et al. (IMA J. Numer. Anal., Vol. 23, 2003, pp. 395-419). Some Riemannian techniques used here were previously introduced by Ferreira and Svaiter (J. Complexity, Vol. 18, 2002, pp. 304-329) in the context of Kantorovich's theorem for vector fields with Lipschitz continuous covariant derivatives.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ALVAREZ-AQUINO, FRANCISCO | Mujer |
Universidad de Chile - Chile
|
| 2 | Bolte, J. | Hombre |
UNIV PARIS 06 - Francia
Sorbonne Université - Francia |
| 3 | Munier, J. | - |
Univ Montpellier 2 - Francia
Institut Montpelliérain Alexander Grothendieck - Francia CNRS Centre National de la Recherche Scientifique - Francia |