Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/0004-6361/201935480 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
High-resolution (0.'' 03-0.'' 09 (9-26 pc)) ALMA (100-350 GHz (lambda 3 to 0.8 mm)) and (0.'' 04 (11 pc)) VLA 45 GHz measurements have been used to image continuum and spectral line emission from the inner (100 pc) region of the nearby infrared luminous galaxy IC 860. We detect compact (r similar to 10 pc), luminous, 3 to 0.8 mm continuum emission in the core of IC 860, with brightness temperatures T-B > 160 K. The 45 GHz continuum is equally compact but significantly fainter in flux. We suggest that the 3 to 0.8 mm continuum emerges from hot dust with radius r similar to 8 pc and temperature T-d similar to 280 K, and that it is opaque at millimetre wavelengths, implying a very large H-2 column density N(H-2) greater than or similar to 10(26) cm(-2). Vibrationally excited lines of HCN nu(2) = if J = 4-3 and 3-2 (HCN-VIB) are seen in emission and spatially resolved on scales of 40-50 pc. The line-to-continuum ratio drops towards the inner r = 4 pc, resulting in a ring-like morphology. This may be due to high opacities and matching HCN-VIB excitation- and continuum temperatures. The HCN-VIB emission reveals a north-south nuclear velocity gradient with projected rotation velocities of nu = 100 km S-1 at r = 10 pc. The brightest emission is oriented perpendicular to the velocity gradient, with a peak HCN-VIB 3-2 T-B of 115 K (above the continuum). Vibrational ground-state lines of HCN 3-2 and 4-3, HC15 N 4-3, HCO+ 3-2 and 4-3, and CS 7-6 show complex line absorption and emission features towards the dusty nucleus. Redshifted, reversed P-Cygni profiles are seen for HCN and HCO+ consistent with gas inflow with nu(in) less than or similar to 50 km S--(1). Foreground absorption structures outline the flow, and can be traced from the north-east into the nucleus. In contrast, CS 7-6 has blueshifted line profiles with line wings extending out to -180 km S-1. We suggest that a dense and slow outflow is hidden behind a foreground layer of obscuring, inflowing gas. The centre of IC 860 is in a phase of rapid evolution where an inflow is building up a massive nuclear column density of gas and dust that feeds star formation and/or AGN activity. The slow, dense outflow may be signaling the onset of feedback. The inner, r = 10 pc, IR luminosity may be powered by an AGN or a compact starburst, which then would likely require a top-heavy initial mass function.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aalto, Susanne | Mujer |
Chalmers Univ Technol - Suecia
Chalmers University of Technology, Onsala Space Observatory - Suecia Chalmers University of Technology - Suecia |
| 2 | Muller, S. | Hombre |
Chalmers Univ Technol - Suecia
Chalmers University of Technology, Onsala Space Observatory - Suecia Chalmers University of Technology - Suecia |
| 3 | König, Sabine | - |
Chalmers Univ Technol - Suecia
Chalmers University of Technology, Onsala Space Observatory - Suecia Chalmers University of Technology - Suecia |
| 4 | Falstad, N. | - |
Chalmers Univ Technol - Suecia
Chalmers University of Technology, Onsala Space Observatory - Suecia Chalmers University of Technology - Suecia |
| 5 | Mangum, J. | Hombre |
Natl Radio Astron Observ - Estados Unidos
National Radio Astronomy Observatory - Estados Unidos |
| 6 | Sakamoto, K. | Hombre |
Acad Sinica - Taiwán
Academia Sinica, Institute of Astronomy and Astrophysics - Taiwán |
| 7 | Privon, George C. | Hombre |
UNIV FLORIDA - Estados Unidos
University of Florida - Estados Unidos |
| 8 | Gallagher, John | Hombre |
UNIV WISCONSIN - Estados Unidos
University of Wisconsin-Madison - Estados Unidos |
| 9 | Combes, Francoise | Mujer |
Observ Paris - Francia
LERMA - Laboratoire d'Études du Rayonnement et de la Matière en Astrophysique et Atmosphères - Francia |
| 10 | Garcia-Burillo, S. | Hombre |
Observ Madrid - España
Observatorio Astronomico Nacional - España |
| 11 | Martin, S. | Hombre |
ESO - Chile
|
| 12 | Viti, Serena | Mujer |
UCL - Reino Unido
University College London - Reino Unido |
| 13 | van der Werf, Paul P. | Hombre |
Leiden Univ - Países Bajos
Leiden Observatory Research Institute - Países Bajos Sterrewacht Leiden - Países Bajos |
| 14 | Evans, Aaron S. | Hombre |
UNIV VIRGINIA - Estados Unidos
NRAO - Estados Unidos University of Virginia - Estados Unidos National Radio Astronomy Observatory - Estados Unidos |
| 15 | Black, J. H. | Hombre |
Chalmers Univ Technol - Suecia
Chalmers University of Technology, Onsala Space Observatory - Suecia Chalmers University of Technology - Suecia |
| 16 | Varenius, E. | - |
UNIV MANCHESTER - Reino Unido
|
| 17 | Beswick, R. | Hombre |
UNIV MANCHESTER - Reino Unido
University of Manchester - Reino Unido The University of Manchester - Reino Unido |
| 18 | Fuller, Gary | Hombre |
UNIV MANCHESTER - Reino Unido
|
| 19 | Henkel, C. | Hombre |
Max Planck Inst Radioastron - Alemania
King Abdulaziz Univ - Arabia Saudí Max Planck Institute for Radio Astronomy - Alemania King Abdulaziz University - Arabia Saudí |
| 20 | Kohno, Kotaro | Hombre |
Univ Tokyo - Japón
University of Tokyo - Japón The University of Tokyo - Japón |
| 21 | Alatalo, Katherine | Mujer |
Space Telescope Sci Inst - Estados Unidos
STScI - Estados Unidos Space Telescope Science Institute - Estados Unidos |
| 22 | Muehle, S. | - |
Argelander Inst Astron - Alemania
|
| 22 | Mühle, S. | Mujer |
Argelander-Institut für Astronomie - Alemania
Universität Bonn - Alemania |
| 22 | Muller, S. | Hombre |
Chalmers Univ Technol - Suecia
Chalmers University of Technology, Onsala Space Observatory - Suecia Chalmers University of Technology - Suecia |
| Fuente |
|---|
| National Science Foundation |
| Ministry of Science and Technology |
| European Research Council |
| Swedish Research Council |
| European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme |
| Science and Technology Facilities Council |
| Vetenskapsrådet |
| Spanish grant |
| European Union’s Horizon 2020 |
| ASIAA |
| Horizon 2020 |
| Vetenskapsradet |
| Korea Astronomy and Space Science Institute |
| National Radio Astronomy Observatory |
| National Institutes of Natural Sciences |
| National Research Council Canada |
| Horizon 2020 Framework Programme |
| Division of Arctic Sciences |
| Ministry of Science and Technology, Taiwan |
| Spanish |
| Nordic ALMA Regional Centre |
| ARC node |
| National Astronomical Observatory of Japan |
| Associated Universities |
| Agradecimiento |
|---|
| This paper makes use of the following ALMA data: ADS/JAO. ALMA#2015.1.00823. S and 2016.1.00800. S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. We acknowledge excellent support from the Nordic ALMA Regional Centre (ARC) node based at Onsala Space Observatory. The Nordic ARC node is funded through Swedish Research Council grant No 2017-00648. SA acknowledges that this project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement No ERC-2017-ADG-789410. SA also acknowledges the Swedish Research Council grant 621-2011-4143. KS was supported by grant MOST 102-2119-M-001-011-MY3 SGB thanks support from Spanish grantAYA2012-32295. We thank E. Gonzalez-Alfonso for alerting us to the potential impact of photon trapping on T<INF>d</INF>. |
| This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.00823.S and 2016.1.00800.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. We acknowledge excellent support from the Nordic ALMA Regional Centre (ARC) node based at Onsala Space Observatory. The Nordic ARC node is funded through Swedish Research Council grant No 2017-00648. SA acknowledges that this project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, grant agreement No ERC-2017-ADG-789410. SA also acknowledges the Swedish Research Council grant 621-2011-4143. KS was supported by grant MOST 102-2119-M-001-011-MY3 SGB thanks support from Spanish grantAYA2012-32295.We thank E. Gonzalez-Alfonso for alerting us to the potential impact of photon trapping on Td. |