Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Flow and mold filling modeling and simulation to enhance resin transfer molding processes
Indexado
WoS WOS:000257133100007
Scopus SCOPUS_ID:48849102535
DOI 10.1115/1.2931141
Año 2008
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Among the multiple stages of the resin transfer molding (RTM) processes, flow and mold filling of injected resin correspond to the most complex and crucial stage. During the latter, air bubble agglomeration must be avoided and complete wetting of fibers must be achieved in order to ensure the maximum quality of the parts at the lowest possible manufacturing time. Focusing on these manufacturing issues, a mathematical model and a numerical resolution are presented to predict the resin flow throughout the fiber reinforcement inside the mold cavity. The methodology employs conventional finite element techniques for solving the flow problem through a porous medium governed by Darcy's law and mass conservation. Simultaneously, a state of the art numerical scheme known as the discontinuous Galerkin method is implemented to determine the location and shape of the advancing flow fronts ruled by a hyperbolic transport equation. These two schemes are implemented to work with a two-dimensional domain, handling diverse geometries with multiple injection and ventilation ports. The results for key process parameters, such as filling time and position of the advancing flow fronts, show a good agreement with results from analytical solutions for particular cases and from empirical data. When several simulated results are taken into account in the design process of RTM cavities, the overall process could be enhanced.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Mechanical
Materials Science, Multidisciplinary
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Mosella, C. J. - Pontificia Universidad Católica de Chile - Chile
2 MONTECINOS-RUPPRECHT, JOSE PEDRO Hombre Pontificia Universidad Católica de Chile - Chile
3 RAMOS-GREZ, JORGE ANDRES Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.