Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Spatio-temporal estimation of climatic variables for gap filling and record extension using Reanalysis data
Indexado
WoS WOS:000475737500074
Scopus SCOPUS_ID:85054742922
DOI 10.1007/S00704-018-2653-8
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The availability of reliable meteorological records is crucial for the development of a number of environmental studies. Unfortunately, these records are not always complete, usually show errors and/or have an insufficient length. This paper presents a gap filling and data record extension methodology for minimum temperature, maximum temperature, and precipitation. It uses climatic information from the NCEP-NCAR Reanalysis project, identifying pixels (grid cells) within a Reanalysis domain that have the highest Pearson's correlation coefficient with the variable of interest. Nine stations in the Maipo River basin (Santiago, Chile) were selected for a reconstruction experiment (from 1950 to 1970) and a subsequent gap filling experiment (from 1970 to 2012). A generalized linear mixed model with a bidirectional stepwise fit procedure was used to model temperature, whereas precipitation occurrence was represented using a generalized linear mixed model with binomial distribution, and precipitation amount used an exponential generalized linear model. The performance of the algorithm was compared with inverse distance weighting and spline interpolation methods and further evaluated using the Standardized Precipitation Evapotranspiration Index, contrasting real versus modeled data. Values of the coefficient of determination averaged 0.76 (0.74-0.84) minimum temperature, 0.73 (0.73-0.81) for maximum temperature, and 0.68 (0.51-0.78) for precipitation. Root-mean-squared error was around 1.5 degrees C and 5mm for temperature and precipitation, respectively. The model explains local variation of climatic variables and indicators and can be replicated anywhere, as the Reanalysis data are easily accessible and have a worldwide coverage.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Meteorology & Atmospheric Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Morales-Moraga, David Hombre Pontificia Universidad Católica de Chile - Chile
2 MEZA-DABANCENS, FRANCISCO JAVIER Hombre Pontificia Universidad Católica de Chile - Chile
3 MIRANDA-SALAS, MARCELO DAVID Hombre Pontificia Universidad Católica de Chile - Chile
4 GIRONAS-LEON, JORGE ALFREDO Hombre Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Investigacion para la Gestion Integrada de Desastres Naturales - Chile
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile
Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Fondo Nacional de Desarrollo Científico y Tecnológico
US National Science Foundation
Inter-American Institute for Global Change Research
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondecyt Project
Inter-American Institute for Global Change Research (IAI) - US National Science Foundation
International Association for Identification

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to acknowledge the support from FONDECYT Project Nos. 1120713 and 1170429. This work was partly carried out with the aid of a grant from the Inter-American Institute for Global Change Research (IAI, CRN3056) which is supported by the US National Science Foundation (Grant GEO-1128040).
The authors would like to acknowledge the support from FONDECYT Project Nos. 1120713 and 1170429. This work was partly carried out with the aid of a grant from the Inter-American Institute for Global Change Research (IAI, CRN3056) which is supported by the US National Science Foundation (Grant GEO-1128040). Acknowledgments

Muestra la fuente de financiamiento declarada en la publicación.