Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1142/S0218202508003182 | ||||
| Año | 2008 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Polydisperse suspensions with particles of a finite number N of size classes have been widely studied in laboratory experiments. However, in most real-world applications the particle sizes are distributed continuously. In this paper, a well-studied one-dimensional kinematic model for batch sedimentation of polydisperse suspensions of small equal-density spheres is extended to suspensions with a continuous particle size distribution. For this purpose, the phase density function Phi = Phi(t, x, xi), where xi epsilon [0, 1] is the normalized squared size of the particles, is introduced, whose integral with respect to. on an interval [xi(1), xi(2)] is equivalent to the volume fraction at (t, x) occupied by particles of that size range. Combining the Masliyah-Lockett-Bassoon (MLB) model for the solid. fluid relative velocity for each solids species with the concept of phase density function yields a scalar, first-order equation for F, namely the equation of the generalized kinetic theory. Three numerical schemes for the solution of this equation are introduced, and a numerical example and an L(1) error study show that one of these schemes introduces less numerical diffusion and less spurious oscillations near discontinuities than the others. Several numerical examples illustrate the simulated behavior of this kind of suspensions. Numerical results also illustrate the solution of an eigenvalue problem associated with the equation of the generalized kinetic theory.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Burger, R. | Hombre |
Universidad de Concepción - Chile
|
| 2 | Garcia, Antonio | Hombre |
Universidad Católica del Norte - Chile
|
| 3 | Kunik, Matthias | Hombre |
Univ Magdeburg - Alemania
Otto von Guericke University of Magdeburg - Alemania Otto-von-Guericke-Universität Magdeburg - Alemania |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Centro de Recursos HÃdricos para la Agricultura y la MinerÃa |
| Fondap in Applied Mathematics |
| Centro de Investigacion Cientifica y Tecnologica para la Mineria (CICITEM), Antofagasta, Chile |
| Centro de Investigación Científica y Tec-nológica para la Minería |
| Agradecimiento |
|---|
| RB acknowledges support by Fondecyt project 1050728 and Fondap in Applied Mathematics (project 15000001). Part of this work was performed while MK was visiting the University of Concepcion. He acknowledges support by Fondecyt project 7050211. AG acknowledges support by Centro de Investigacion Cientifica y Tecnologica para la Mineria (CICITEM), Antofagasta, Chile. |
| RB acknowledges support by Fondecyt project 1050728 and Fondap in Applied Mathematics (project 15000001). Part of this work was performed while MK was visiting the University of Concepción. He acknowledges support by Fondecyt project 7050211. AG acknowledges support by Centro de Investigación Científica y Tec-nológica para la Minería (CICITEM), Antofagasta, Chile. |