Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Traditional versus Novel Forecasting Techniques: How Much do We Gain?
Indexado
WoS WOS:000261019700006
Scopus SCOPUS_ID:55349117787
DOI 10.1002/FOR.1066
Año 2008
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This article applies two novel techniques to forecast the value of US manufacturing, shipments over the period 1956-2000: wavelets and support vector machines (SVM). Wavelets have become increasingly popular ill the fields of economics and finance in recent years, whereas SVM has emerged as a more user-friendly alternative to artificial neural networks. These two methodologies are compared with two well-known time series techniques: multiplicative seasonal autoregressive integrated moving average (ARIMA) and unobserved components (UC). Based oil forecasting accuracy and encompassing tests, and forecasting combination, we Conclude that UC and AIRIMA generally outperform wavelets and SVM. However, in some cases the latter provide valuable forecasting information that it is not contained in the former. Copyright (C) 2008 John Wiley & Sons, Ltd.

Revista



Revista ISSN
Journal Of Forecasting 0277-6693

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Economics
Management
Scopus
Computer Science Applications
Economics And Econometrics
Strategy And Management
Management Science And Operations Research
Modeling And Simulation
Statistics, Probability And Uncertainty
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 FERNANDEZ-MATURANA, VIVIANA PAULINA Mujer Universidad de Chile - Chile
Trinity Coll Dublin - Irlanda
Trinity College Dublin - Irlanda

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 12.5 %
Citas No-identificadas: 87.5 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 12.5 %
Citas No-identificadas: 87.5 %

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.