Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.NA.2007.10.004 | ||||
| Año | 2008 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We introduce the concept of alpha-resolvent families to prove the existence of almost automorphic mild solutions to the differential equation D(1)(alpha)u(t) = Au(t) + t(n)f(t), 1 <= alpha <= 2, n is an element of Z(+) considered in a Banach space X, where f : R -> X is almost automorphic. We also prove the existence and uniqueness of an almost automorphic mild solution of the semilinear equation D(1)(alpha)u(t) = Au(t) + f(t, u(t)), 1 <= alpha <= 2 assuming f(t, x) is almost automorphic in t for each x is an element of X, satisfies a global Lipschitz condition and takes values on X. Finally, we prove also the existence and uniqueness of an almost automorphic mild solution of the semilinear equation D(1)(alpha)u(t) = Au(t) + f(t, u(t), u'(t)), 1 <= alpha <= 2, under analogous conditions as in the previous case. (C) 2007 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ARAYA-BASTIAS, DANIELA ANDREA | Mujer |
Universidad de Santiago de Chile - Chile
|
| 2 | LIZAMA-YAÑEZ, CARLOS | Hombre |
Universidad de Santiago de Chile - Chile
|