Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JDE.2008.11.014 | ||||
| Año | 2009 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we Study small polynomial perturbations of a Hamiltonian vector field with Hamiltonian F formed by a product of (d + 1) real linear functions in two variables. We assume that the corresponding lines are in a general position in R(2). That is, the lines are distinct, non-parallel, no three of them have a common point and all critical values not corresponding to intersections of lines are distinct. We prove in this paper that the principal Poincare-Pontryagin function M(k)(t), associated to such a perturbation and to any family of ovals surrounding a singular point of center type, belongs to the C[t, 1/t]-module generated by Abelian integrals and some integrals I(i,j)*(t), with 1 <= i < j <= d defined in the paper. Moreover, I(i,j)*(t) are not Abelian integrals. They are iterated integrals of length two. (C) 2008 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | URIBE-MATURANA, MARIO OSVALDO | Hombre |
Universidad Católica de la Santísima Concepción - Chile
|
| Fuente |
|---|
| Direction of Research of the Universidad Catolica de la Ssma. Concepcion of Chile |
| Agradecimiento |
|---|
| I would like to thank the Direction of Research of the Universidad Catolica de la Ssma. Concepcion of Chile for financial support. My thanks also go to P. Mardesic, M. Pelletier, A. Jebrane, R. Roussarie and L. Gavrilov for useful discussions. |
| I would like to thank the Direction of Research of the Universidad Católica de la Ssma. Concepción of Chile for financial support. My thanks also go to P. Mardešić, M. Pelletier, A. Jebrane, R. Roussarie and L. Gavrilov for useful discussions. |