Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JFA.2009.04.001 | ||||
| Año | 2009 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the existence, nonexistence and multiplicity of positive solutions for a family of problems -Delta(p)u = f(lambda)(x, u), u is an element of W-0(1,p)(Omega), where Omega is a bounded domain n R-N, N > p, and lambda > 0 is a parameter. The family we consider includes the well-known nonlinearities of Ambrosetti-Brezis-Cerami type in a more general form, namely lambda a(x)u(q) + b(x)u(r), where 0 <= q < p - 1 < r <= p* - 1. Here the coefficient a(x) is assumed to be nonnegative but b(x) is allowed to change sign, even in the critical case. Preliminary results of independent interest include the extension to the p-Laplacian context of the Brezis-Nirenberg results on local minimization in W-0(1,p) and C-0(1), a C-1,C-alpha estimate for equations of the form -Delta(p)u = h(x, u) which h of critical growth, a strong comparison result for the p-Laplacian, and a variational approach to the method of upper-lower solutions for the p-Laplacian. (C) 2009 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | De Figueiredo, Djairo G. | - |
UNIV ESTADUAL CAMPINAS - Brasil
Universidade Estadual de Campinas - Brasil |
| 2 | Gossez, Jean-Pierre | Hombre |
Univ Libre Bruxelles - Bélgica
Université libre de Bruxelles (ULB) - Bélgica Université libre de Bruxelles - Bélgica |
| 3 | UBILLA-LOPEZ, PEDRO EDUARDO | Hombre |
Universidad de Santiago de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| CNPq |
| FAPESP |
| USACH |
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fundação de Amparo à Pesquisa do Estado de São Paulo |
| Universidad de Santiago de Chile |
| Fonds De La Recherche Scientifique - FNRS |
| FNRS |
| PRONEX |
| ULB |
| Agradecimiento |
|---|
| Most of this work was done with the support of CNPq, FNRS, PRONEX, FAPESP and FONDECYT 1080430 at Unicamp, ULB and USACH. We wish to thank H. Brezis for several comments relative to Proposition 3.7 and the referee for some remarks on condition (Hh) in Theorems 2.5 and 2.6. |
| Most of this work was done with the support of CNPq, FNRS, PRONEX, FAPESP and FONDECYT 1080430 at Unicamp, ULB and USACH. We wish to thank H. Brezis for several comments relative to Proposition 3.7 and the referee for some remarks on condition (Hh) in Theorems 2.5 and 2.6. |