Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.LAA.2009.03.041 | ||||
| Año | 2009 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A generalized Bethe tree is a rooted unweighted tree in which vertices at the same level have the same degree. Let G be any connected graph. Let G{B} be the graph obtained from G by attaching a generalized Bethe tree B, by its root, to each vertex of G. We characterize completely the eigenvalues of the signless Laplacian, Laplacian and adjacency matrices of the graph G{B} including results on the eigenvalue multiplicities. Finally, for the Laplacian and signless Laplacian matrices, we recall a procedure to compute a tight upper bound on the algebraic connectivity of G{B} as well as on the smallest eigenvalue of the signless Laplacian matrix of G{B} whenever g is a non-bipartite graph. (C) 2009 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ROJO-JERALDO, OSCAR LUIS | Hombre |
Universidad Católica del Norte - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |